Drgania i fale mechaniczne – poziom podstawowy
Transkrypt
Drgania i fale mechaniczne – poziom podstawowy
4 Drgania i fale mechaniczne – poziom podstawowy Egzamin maturalny z fizyki i astronomii Arkusz I Zadanie 1. 10. (2 pkt) Zadanie Wyznaczanie przyspieszenia ziemskiego (2Źródło: pkt) CKE 01.2006 (PP), zad. 10. Uczniowie przystąpili do wyznaczenia wartoĞci przyspieszenia grawitacyjnego Ziemi za pomocą wahadáa matematycznego. 10.1 (1 pkt) Zadanie 1.1 (1 pkt) Wahadáo odchylono o niewielki kąt od poáoĪenia równowagi i puszczono. Narysuj siáy dziaáające na wahadáo matematyczne w tym momencie. Zadanie 10.2 (1 1.2 pkt)(1 pkt) Wahadáo wprowadzono w ruch. Podaj, jakie wielkoĞci, charakteryzujące wahadáo i jego ruch wystarczy zmierzyü, aby wyznaczyü wartoĞü przyspieszenia ziemskiego. Zadanie 11. Pole grawitacyjne planety (2 pkt) Wykres przedstawia zaleĪnoĞü przyspieszenia grawitacyjnego pewnej planety bĊdącej jednorodną kulą od odlegáoĞci od jej Ğrodka. Odczytaj z wykresu i zapisz, przybliĪoną wartoĞü przyspieszenia grawitacyjnego na powierzchni planety oraz wartoĞü promienia tej planety. PromieĔ wyraĨ w metrach. ag, m s2 30 20 10 0 1 50 100 150 200 250 r, ʘ106 m Zadanie 13. CiĊĪarek na sprĊĪynie (5 pkt) Zadanie 2. (5 pkt) Źródło: CKE 01.2006 (PP), zad. 13. Wykres przedstawia zaleĪnoĞü poáoĪenia ciĊĪarka drgającego na sprĊĪynie od czasu. Zadanie 13.1 (1 2.1 pkt)(1 pkt) Odczytaj z wykresu i zapisz, w których momentach czasu wartoĞü prĊdkoĞci ciĊĪarka byáa równa zeru. 6 Egzamin maturalny z fizyki i astronomii Arkusz I Zadanie (2 pkt) 13.2 (2 2.2 pkt) Oblicz czĊstotliwoĞü drgaĔ ciĊĪarka. Zadanie (2 pkt) 13.3 (2 2.3 pkt) Odczytaj z wykresu i zapisz, w których momentach czasu wartoĞü prĊdkoĞci ciĊĪarka byáa maksymalna oraz jaka byáa wartoĞü wychylenia w tych momentach? Zadanie 14. Rakiety (3 pkt) 2 Dwie rakiety poruszają siĊ wzdáuĪ tej samej prostej naprzeciw siebie z prĊdkoĞciami 7 Egzamin maturalny z fizyki i astronomii Arkusz I Zadanie Wahadáo (4 pkt) Zadanie 3. 14. (4 pkt) Źródło: CKE 05.2006 (PP), zad. 14. Na nierozciągliwej cienkiej nici o dáugoĞci 1,6 m zawieszono maáy ciĊĪarek, budując w ten sposób model wahadáa matematycznego. 14.1 (2 3.1 pkt) Zadanie (2 pkt) Podaj, czy okres drgaĔ takiego wahadáa, wychylonego z poáoĪenia równowagi o niewielki kąt ulegnie zmianie, jeĞli na tej nici zawiesimy maáy ciĊĪarek o dwukrotnie wiĊkszej masie. OdpowiedĨ uzasadnij, odwoáując siĊ do odpowiednich zaleĪnoĞci. Zadanie (2 pkt) 14.2 (2 3.2 pkt) Oblicz liczbĊ peánych drgaĔ, które wykonuje takie wahadáo w czasie 8 s, gdy wychylono je o niewielki kąt z poáoĪenia równowagi i puszczono swobodnie. W obliczeniach przyjmij, Īe wartoĞü przyspieszenia ziemskiego jest równa 10 m/s2. Nr zadania Wypeánia Maks. liczba pkt egzaminator! Uzyskana liczba pkt 3 13.1 1 13.2 2 14.1 2 14.2 2 sin Į cos Į tg Į Egzamin maturalny z fizyki i astronomii 30o Arkusz I ctg Į 17.1. (24.pkt) Zadanie (3 pkt) Zadanie 19. Echo (3 pkt) 0,5000 0,8660 0,5774 1,7321 0,7071 0,7071 1,0000 1,0000 0,8660 0,5000 1,7321 11 0,5774 Źródło: CKE 05.2006 (PP), zad. 19. Oblicz wspóáczynnik zaáamania materiaáu, z którego wykonano páytkĊ. Wykorzystaj JeĪeli dwa jednakowe dĨwiĊki docierają do ucha w odstĊpie czasu dáuĪszym niĪ 0,1 s są informacje zawarte na rysunku oraz tabelĊ. sáyszane przez czáowieka oddzielnie (powstaje echo). JeĞli odstĊp czasu jest krótszy od 0,1 s dwa dĨwiĊki odbieramy jako jeden o przedáuĪonym czasie trwania (powstaje pogáos). Oblicz, w jakiej najmniejszej odlegáoĞci od sáuchacza powinna znajdowaü siĊ pionowa Ğciana odbijająca dĨwiĊk, aby po klaĞniĊciu w dáonie sáuchacz usáyszaá echo. Przyjmij, Īe wartoĞü prĊdkoĞci dĨwiĊku w powietrzu wynosi 340 m/s. 17.2. (2 pkt) Zapisz dwa warunki, jakie muszą byü speánione, aby na granicy dwóch oĞrodków wystąpiáo zjawisko caákowitego wewnĊtrznego odbicia. 1. ................................................................................................................................................. ....................................................................................................................................................... 2. ................................................................................................................................................. ....................................................................................................................................................... Zadanie Zbiornik z azotem (3 pkt) Zadanie 5. 20. (6 pkt) 18. Wahadáo matematyczne (6 pkt) Źródło: CKE 2007 (PP), zad. 18. Równanie opisujące zaleĪnoĞü od czasu, maáej kulki zawieszonej na cienkiej Stalowy zbiornik zawiera azotwychylenia pod ciĞnieniem 1200dla kPa. Temperatura gazu wynosi 27oC. Zbiornik zabezpieczony jest zaworem bezpieczeĔstwa, który otwiera siĊ gdy 20 t. nici i poruszającej siĊ ruchem harmonicznym, ma w ukáadzie SI postaü: x =ciĞnienie 0,02sin gazu przekroczy 1500 kPa. Zbiornik wystawiono na dziaáanie promieni sáonecznych, w oraz, wyniku Do obliczeĔ przyjmij, Īe ukáad ten moĪna traktowaü jako wahadáo matematyczne Īe o 2 w opisanej sytuacji nastąpi otwarcie czego temperatura gazu wzrosáa do 77 C. Podaj, czy wartoĞü przyspieszenia ziemskiego jest równa 10 m/s . zaworu. OdpowiedĨ uzasadnij, wykonując niezbĊdne obliczenia. Przyjmij, Īe objĊtoĞü Zadanie (2 pkt) 18.1. (25.1 pkt) zbiornika mimo ogrzania nie ulega zmianie. Oblicz dáugoĞü tego wahadáa. Nr zadania Wypeánia Maks. liczba pkt egzaminator! Uzyskana liczba pkt 16.1 2 Nr zadania Wypeánia Maks. liczba pkt egzaminator! Uzyskana liczba pkt 4 16.2 2 18.1 1 17.1 2 18.2 2 17.2 2 19 3 18.1 2 20 3 8 Egzamin maturalny z fizyki i astronomii Poziom podstawowy Zadanie (4 pkt) 18.2. (45.2 pkt) Przedstaw na wykresie zaleĪnoĞü wychylenia tego wahadáa od czasu. Na wykresie zaznacz wartoĞci liczbowe amplitudy oraz okresu drgaĔ. obliczenia wykres Egzamin maturalny z fizyki i astronomii Poziom podstawowy 7 Zadanie 14.2 (2 pkt) Oblicz wartoĞü opóĨnienia tramwaju podczas hamowania. Zadanie (4pkt) pkt) 19. Gaz6.(2 Zadanie 15. CiĊĪarek (4 pkt) 3 Źródło: CKE 2008 (PP), zad. 15. W cylindrzeciĊĪarek o objĊtoĞci 15 dm znajduje siĊ wodór. CiĞnieniejak wodoru Metalowy o masie 1 kg zawieszono na sprĊĪynie na jest równe 1013,82 hPa, o arysunku. jego temperatura wynosiciĊĪarka 27 C. sprĊĪyna wydáuĪyáa siĊ o 0,1 m. Po zawieszeniu Oblicz liczbĊ moli wodoru znajdujących siĊww kierunku cylindrze.pionowym NastĊpnie ciĊĪarek wprawiono w drgania o amplitudzie 0,05 m. ciĊĪarek W obliczeniach przyjmij wartoĞü przyspieszenia ziemskiego równą 10 m/s2, a masĊ sprĊĪyny i siáy oporu pomiĔ. Zadanie (2 pkt) Zadanie 6.115.1 (2 pkt) WykaĪ, Īe wartoĞü wspóáczynnika sprĊĪystoĞci sprĊĪyny wynosi 100 N/m. Zadanie 15.2 (2 pkt) Oblicz okres drgaĔ ciĊĪarka zawieszonego na sprĊĪynie, przyjmując, Īe wspóáczynnik sprĊĪystoĞci sprĊĪyny jest równy 100 N/m. 5 Zadanie 6.215.2 (2 pkt) Zadanie (2 pkt) Oblicz okres drgaĔ ciĊĪarka zawieszonego na sprĊĪynie, przyjmując, Īe wspóáczynnik sprĊĪystoĞci sprĊĪyny jest równy 100 N/m. Egzamin maturalny z fizyki i astronomii Poziom podstawowy 6 Nr zadania 13.2. 14.1. 14.2. 15.1. 15.2. Źródło: CKE 2009 (PP), zad. 13. 2 2 2 2 2 Zadanie 7. 13. (3 pkt) Wypeánia Zadanie Wózek (3 pkt) Maks. liczba pkt egzaminator! Wózek o masie 0,5 kg, poáączony ze Ğcianą pomocą sprĊĪyny, wprawiono w drgania (rys.). Uzyskana liczbazapkt Na wykresie przedstawiono zaleĪnoĞü siáy powodującej ruch wózka od jego przemieszczenia. W obliczeniach pomiĔ opory ruchu. F, N 2 0,025 x, m – 0,025 –2 0 x Zadanie 7.113.1 (2 pkt) Zadanie (2 pkt) Oblicz wspóáczynnik sprĊĪystoĞci sprĊĪyny. Zadanie 7.213.2 (1 pkt) Zadanie (1 pkt) WykaĪ, Īe maksymalna wartoĞü przyspieszenia wózka wynosi 4 m/s2. Zadanie 14. Przemiana gazowa (5 pkt) p W cylindrze zamkniĊtym ruchomym táokiem znajduje siĊ 48 g gazu. 6 Temperatura początkowa gazu wynosiáa 2