klasa I TM
Transkrypt
klasa I TM
Wymagania edukacyjne z matematyki dla klasy I TM w roku szkolnym 2012/2013 Uczeń otrzymuje ocenę celującą, gdy: a) w 100% opanował treści zawarte w programie nauczania. Uczeń otrzymuje ocenę bardzo dobrą, gdy: a) opanował pełny zakres wiedzy i umiejętności przewidziany programem nauczania matematyki w danej klasie b) sprawnie posługuje się zdobytymi wiadomościami, rozwiązuje samodzielnie zadania teoretyczne i praktyczne z zakresu programu nauczania c) posiada umiejętność uogólnień i wyciągania wniosków oraz potrafi zastosować posiadaną wiedzę do rozwiązywania zadań i problemów w nowych sytuacjach d) potrafi uzasadnić wykonywane operacje przez powoływanie się na poznane twierdzenia, posługuje się poprawnym językiem matematycznym. Uczeń otrzymuje ocenę dobrą, gdy: a) zna definicje, twierdzenia, własności z zakresu programu nauczania danej klasy b) poprawnie stosuje wiadomości do samodzielnego rozwiązywani typowych zadań teoretycznych i praktycznych c) potrafi uzasadnić wykonywane operacje przez powoływanie się na poznane twierdzenia, posługuje się poprawnym językiem matematycznym. Uczeń otrzymuje ocenę dostateczną, gdy: a) zna większość definicji, twierdzeń i własności z zakresu programu nauczania danej klasy b) rozwiązuje samodzielnie typowe zadania teoretyczne i praktyczne o średnim stopniu trudności c) podejmuje próby uzasadniania wykonywanych czynności przez powoływanie się na twierdzenia i własności w prostych rozumowaniach logicznych. Uczeń otrzymuje ocenę dopuszczającą, gdy: a) zna podstawowe definicje, twierdzenia i własności z zakresu programu nauczania danej klasy b) braki w opanowaniu niektórych pojęć nie przekreślają moŜliwości uzyskania przez ucznia podstawowej wiedzy i umiejętności w ciągu dalszej nauki c) rozwiązuje typowe zadania teoretyczne i praktyczne o niewielkim stopniu trudności. Uczeń otrzymuje ocenę niedostateczną, gdy: a) nie spełni wymagań na ocenę dopuszczającą, b) nawet przy pomocy nauczyciela nie potrafi wykonać prostych poleceń wymagających zastosowania podstawowych umiejętności, c) braki wiedzy są na tyle duŜe, Ŝe nie rokują nadziei na ich usunięcie nawet przy pomocy nauczyciela w dłuŜszym okresie, d) nie wykazuje aktywności poznawczej i chęci do nauki. Wymagania zostały podzielone na dwie grupy: • Wymagania podstawowe - obejmują wiedzę i umiejętności, całkowicie niezbędne do dalszego kształcenia przedmiotowego i międzyprzedmiotowego, czyli są: - stosunkowo łatwe do opanowania, - całkowicie niezbędne w dalszej nauce, - bezpośrednio uŜyteczne w Ŝyciu pozaszkolnym i ewentualnej pracy zawodowej. • Wymagania ponadpodstawowe stanowią pogłębienie i poszerzenie wymagań podstawowych. Wymagania ponadpodstawowe obejmują wiadomości i umiejętności, które są: - trudniejsze do opanowania niŜ podstawowe, - przydatne, ale nie niezbędne w dalszej nauce, - pośrednio uŜyteczne w Ŝyciu pozaszkolnym i ewentualnej pracy zawodowej. Spełnienie wymagań podstawowych pozwala uzyskać stopień co najwyŜej dostateczny. WYMAGANIA EDUKACYJNE PODSTAWOWE PONADPODSTAWOWE UCZEŃ POTRAFI: Liczby rzeczywiste i działania na nich • • • • • • • • • • • wyznaczać sumę, iloczyn i róŜnicę dwóch zbiorów liczbowych; interpretować liczby naturalne na osi liczbowej; rozpoznawać liczby naturalne podzielne przez 2, 3, 5, 9, 10, 100; rozpoznawać liczbę złoŜoną, gdy jest ona jednocyfrowa lub dwucyfrowa, a takŜe, gdy na istnienie dzielnika wskazuje poznana cecha podzielności; rozkładać liczby dwucyfrowe na czynniki pierwsze; wykonywać proste rachunki na liczbach całkowitych; zamieniać ułamki zwykłe o mianownikach będących dzielnikami liczb 10, 100, 1000 itd. na ułamki dziesiętne skończone dowolną metodą (przez rozszerzanie ułamków zwykłych, dzielenie licznika przez mianownik w pamięci, pisemnie lub za pomocą kalkulatora); ułamki zwykłe o mianownikach innych niŜ w punkcie poprzednim zapisywać w postaci rozwinięcia dziesiętnego nieskończonego (z uŜyciem trzech kropek po ostatniej cyfrze), dzieląc licznik przez mianownik w pamięci, pisemnie lub za pomocą kalkulatora; zamieniać ułamki zwykłe na ułamki dziesiętne (takŜe okresowe), zamieniać ułamki dziesiętne skończone na ułamki zwykłe; obliczać potęgi liczb wymiernych o wykładnikach naturalnych; zapisywać w postaci jednej potęgi: iloczyny potęg o takich samych podstawach, iloczyny • • przedstawiać liczby rzeczywiste w róŜnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z uŜyciem symboli pierwiastków, potęg) w zagadnieniach złoŜonych wymagających doboru właściwego algorytmu; obliczać wartości wyraŜeń arytmetycznych (wymiernych) w zagadnieniach złoŜonych wymagających doboru właściwego algorytmu; oraz ilorazy potęg o takich samych wykładnikach oraz potęgę potęgi (przy wykładnikach naturalnych); • porównywać potęgi o róŜnych wykładnikach naturalnych i takich samych podstawach oraz porównywać potęgi o takich samych wykładnikach naturalnych i róŜnych dodatnich podstawach; • zamieniać potęgi o wykładnikach całkowitych ujemnych na odpowiednie potęgi o wykładnikach naturalnych; • zapisywać liczby w notacji wykładniczej, tzn. w postaci a ⋅10k , gdzie k jest liczbą całkowitą i 1 ≤ a < 10 ; • obliczać wartości pierwiastków drugiego i trzeciego stopnia z liczb, które są odpowiednio kwadratami lub sześcianami liczb wymiernych; • wyłączać czynnik przed znak pierwiastka oraz włączać czynnik pod znak pierwiastka; • mnoŜyć i dzielić pierwiastki drugiego stopnia; • mnoŜyć i dzielić pierwiastki trzeciego stopnia; • przedstawiać liczby rzeczywiste w róŜnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z uŜyciem symboli pierwiastków, potęg) w sytuacjach typowych wymagających uŜycia jednego algorytmu; • obliczać wartości wyraŜeń arytmetycznych (wymiernych) w sytuacjach typowych wymagających uŜycia jednego algorytmu; Potęgowanie, pierwiastkowanie i logarytmowanie • posługiwać się w obliczeniach pierwiastkami dowolnego stopnia i stosować prawa działań na pierwiastkach w sytuacjach typowych wymagających uŜycia jednego algorytmu; • obliczać potęgi o wykładnikach wymiernych i stosować prawa działań na potęgach o wykładnikach wymiernych w sytuacjach typowych wymagających uŜycia jednego algorytmu; • wykorzystywać definicję logarytm w sytuacjach typowych wymagających uŜycia jednego algorytmu; • stosować w obliczeniach wzory na logarytm iloczynu, logarytm ilorazu i logarytm potęgi o wykładniku naturalnym w sytuacjach typowych wymagających uŜycia jednego algorytmu; • stosować w obliczeniach wzór na zamianę podstawy logarytmu w sytuacjach typowych wymagających uŜycia jednego algorytmu; Oś liczbowa i przedziały liczbowe • • • interpretować liczby całkowite na osi liczbowej; obliczać wartość bezwzględną; interpretować liczby wymierne na osi liczbowej; obliczać odległość między dwiema liczbami na • • • • • • • posługiwać się w obliczeniach pierwiastkami dowolnego stopnia i stosować prawa działań na pierwiastkach w zagadnieniach złoŜonych wymagających doboru właściwego algorytmu; obliczać potęgi o wykładnikach wymiernych i stosować prawa działań na potęgach o wykładnikach wymiernych w zagadnieniach złoŜonych wymagających doboru właściwego algorytmu; wykorzystywać definicję logarytmu w zagadnieniach złoŜonych wymagających doboru właściwego algorytmu; stosować w obliczeniach wzory na logarytm iloczynu, logarytm ilorazu i logarytm potęgi o wykładniku naturalnym w zagadnieniach złoŜonych wymagających doboru właściwego algorytmu; stosować w obliczeniach wzór na zamianę podstawy logarytmu w zagadnieniach złoŜonych wymagających doboru właściwego algorytmu; •wyznaczać współrzędne środka odcinka w zagadnieniach złoŜonych wymagających doboru właściwego algorytmu; • zaznaczać na osi liczbowej zbiory opisane za • • • • • • • pomocą równań i nierówności typu: x − a = b , x − a < b , x − a ≥ b w zagadnieniach złoŜonych wymagających doboru właściwego algorytmu; osi liczbowej; wskazywać na osi liczbowej zbiór liczb spełniających warunek typu: x ≥ 3 , x < 5 ; obliczać odległość dwóch punktów na osi; wyznaczać współrzędne środka odcinka w sytuacjach typowych wymagających uŜycia jednego algorytmu; posługiwać się pojęciem przedziału liczbowego, zaznaczać przedziały na osi liczbowej; wyznaczać sumę, iloczyn i róŜnicę przedziałów liczbowych. wykorzystywać pojęcie wartości bezwzględnej i jej interpretację geometryczną; zaznaczać na osi liczbowej zbiory opisane za pomocą równań i nierówności typu: x − a = b , x − a < b , x − a ≥ b w sytuacjach typowych wymagających uŜycia jednego algorytmu; Błąd bezwzględny i błąd względny przybliŜenia • • • • zaokrąglać liczby naturalne; szacować wartości wyraŜeń arytmetycznych; zaokrąglać rozwinięcia dziesiętne liczb; obliczać błąd bezwzględny i błąd względny przybliŜenia w sytuacjach typowych wymagających uŜycia jednego algorytmu; • obliczać błąd bezwzględny i błąd względny przybliŜenia w zagadnieniach złoŜonych wymagających doboru właściwego algorytmu; • wykonywać obliczenia procentowe w zagadnieniach złoŜonych wymagających doboru właściwego algorytmu; obliczać podatki w zagadnieniach złoŜonych wymagających doboru właściwego algorytmu; obliczać zysk z lokat (równieŜ złoŜonych na procent składany i na okres krótszy niŜ rok)w zagadnieniach złoŜonych wymagających doboru właściwego algorytmu; Obliczenia procentowe • • • • • • • • przedstawiać część pewnej wielkości jako procent lub promil tej wielkości i odwrotnie; obliczać procent danej liczby; obliczać liczbę na podstawie danego jej procent; stosować obliczenia procentowe do rozwiązywania problemów w kontekście praktycznym, np. obliczać ceny po podwyŜce lub obniŜce o dany procent; wykonywać obliczenia procentowe w sytuacjach typowych wymagających uŜycia jednego algorytmu; wykonywać obliczenia związane z VAT, obliczać odsetki dla lokaty rocznej; obliczać podatki w sytuacjach typowych wymagających uŜycia jednego algorytmu; obliczać zysk z lokat (równieŜ złoŜonych na procent składany i na okres krótszy niŜ rok)w sytuacjach typowych wymagających uŜycia jednego algorytmu; WyraŜenia algebraiczne i wzory skróconego mnoŜenia • korzystać z nieskomplikowanych wzorów, w których występują oznaczenia literowe, zamieniać wzór na formę słowną; • stosować oznaczenia literowe nieznanych wielkości liczbowych i zapisywać proste wyraŜenie algebraiczne na podstawie informacji osadzonych w kontekście praktycznym; • opisywać za pomocą wyraŜeń algebraicznych • • • • • uŜywać wzorów skróconego mnoŜenia na ( a ± b ) 2 w zagadnieniach złoŜonych wymagających doboru właściwego algorytmu; uŜywać wzoru skróconego mnoŜenia na a 2 − b 2 w zagadnieniach złoŜonych wymagających doboru właściwego algorytmu; uŜywać wzorów skróconego mnoŜenia na • • • • • • • • • związki między róŜnymi wielkościami; obliczać wartości liczbowe wyraŜeń algebraicznych; redukować wyrazy podobne w sumie algebraicznej; dodawać i odejmować sumy algebraiczne; mnoŜyć jednomiany, mnoŜyć sumę algebraiczną przez jednomian oraz, w nietrudnych przykładach, mnoŜyć sumy algebraiczne; wyznaczać wskazaną wielkość z podanych wzorów, w tym geometrycznych i fizycznych; uŜywać wzorów skróconego mnoŜenia na ( a ± b ) 2 w sytuacjach typowych wymagających uŜycia jednego algorytmu; uŜywać wzoru skróconego mnoŜenia na a 2 − b 2 w sytuacjach typowych wymagających uŜycia jednego algorytmu; uŜywać wzorów skróconego mnoŜenia na ( a ± b ) 3 w sytuacjach typowych wymagających uŜycia jednego algorytmu; uŜywać wzorów skróconego mnoŜenia na a 3 ± b3 w sytuacjach typowych wymagających uŜycia jednego algorytmu; Elementy statystyki opisowej • wyszukiwać, selekcjonować i porządkować informacje z dostępnych źródeł; • przedstawiać dane w tabeli, za pomocą diagramu słupkowego lub kołowego; • odczytywać i interpretować dane przedstawione w postaci diagramów, wykresów i tabel; • obliczać medianę (takŜe w przypadku danych pogrupowanych); • obliczać średnią arytmetyczną i średnią waŜoną (takŜe w przypadku danych pogrupowanych) w sytuacjach typowych wymagających uŜycia jednego algorytmu; • obliczać odchylenie standardowe zestawu danych (takŜe w przypadku danych odpowiednio pogrupowanych); • interpretować średnią waŜoną i odchylenie standardowe dla danych empirycznych w sytuacjach typowych wymagających uŜycia jednego algorytmu; ( a ± b ) 3 w zagadnieniach złoŜonych • • • wymagających doboru właściwego algorytmu; uŜywać wzorów skróconego mnoŜenia na a 3 ± b3 w zagadnieniach złoŜonych wymagających doboru właściwego algorytmu; obliczać średnią arytmetyczną i średnią waŜoną (takŜe w przypadku danych pogrupowanych) w zagadnieniach złoŜonych wymagających doboru właściwego algorytmu; interpretować średnią waŜoną i odchylenie standardowe dla danych empirycznych w zagadnieniach złoŜonych wymagających doboru właściwego algorytmu; Równania i nierówności pierwszego stopnia z jedną niewiadomą • • • • zapisywać związki między wielkościami za pomocą równania pierwszego stopnia z jedną niewiadomą; sprawdzać, czy dana liczba spełnia równanie stopnia pierwszego z jedną niewiadomą; rozwiązywać równania stopnia pierwszego z jedną niewiadomą, za pomocą równań rozwiązywać zadania osadzone w kontekście praktycznym; • • • sprawdzać, czy dana liczba rzeczywista jest rozwiązaniem równania w zagadnieniach złoŜonych wymagających doboru właściwego algorytmu; rozwiązywać nierówności pierwszego stopnia z jedną niewiadomą w zagadnieniach złoŜonych wymagających doboru właściwego algorytmu; rozwiązywać nierówności pierwszego stopnia z jedna niewiadomą w zagadnieniach złoŜonych • • • • • • • • sprawdzać, czy dana liczba rzeczywista jest rozwiązaniem równania w sytuacjach typowych wymagających uŜycia jednego algorytmu; zapisywać związki między wielkościami wprost proporcjonalnymi i odwrotnie proporcjonalnymi; sprawdzać, czy dana liczba jest rozwiązaniem nierówności; rozwiązywać nierówności pierwszego stopnia z jedną niewiadomą w sytuacjach typowych wymagających uŜycia jednego algorytmu; rozwiązywać nierówności pierwszego stopnia z jedna niewiadomą w sytuacjach typowych wymagających uŜycia jednego algorytmu; rozwiązywać równania i nierówności liniowe z parametrem w sytuacjach typowych wymagających uŜycia jednego algorytmu; wykorzystywać pojęcie wartości bezwzględnej i jej interpretację geometryczną w sytuacjach typowych wymagających uŜycia jednego algorytmu; rozwiązywać równania i nierówności z wartością bezwzględną typu: x + 1 − 2 = 3 , x + 3 + x − 5 > 12 w sytuacjach typowych wymagających uŜycia jednego algorytmu; • • • wymagających doboru właściwego algorytmu; rozwiązywać równania i nierówności liniowe z parametrem w zagadnieniach złoŜonych wymagających doboru właściwego algorytmu; wykorzystywać pojęcie wartości bezwzględnej i jej interpretację geometryczną w zagadnieniach złoŜonych wymagających doboru właściwego algorytmu; rozwiązywać równania i nierówności z wartością bezwzględną typu: x + 1 − 2 = 3 , x + 3 + x − 5 > 12 w zagadnieniach złoŜonych wymagających doboru właściwego algorytmu; Trójkąty podobne i twierdzenie Talesa • • • • • • • • rozpoznawać wielokąty przystające i podobne; obliczać wymiary wielokąta powiększonego lub pomniejszonego w danej skali; obliczać stosunek pól wielokątów podobnych; stosować cechy przystawania trójkątów; korzystać z własności trójkątów prostokątnych podobnych; rozpoznawać trójkąty podobne w sytuacjach typowych wymagających uŜycia jednego algorytmu; wykorzystywać (takŜe w kontekstach praktycznych) cechy podobieństwa trójkątów w sytuacjach typowych wymagających uŜycia jednego algorytmu; stosować twierdzenie Talesa i twierdzenie odwrotne do twierdzenia Talesa do obliczania długości odcinków i ustalania równoległości prostych w sytuacjach typowych wymagających uŜycia jednego algorytmu; Prosta na płaszczyźnie kartezjańskiej • zaznaczać w układzie współrzędnych na płaszczyźnie punkty o danych współrzędnych; • odczytywać współrzędne danych punktów; • obliczać odległość dwóch punktów w sytuacjach typowych wymagających uŜycia jednego algorytmu; • rozpoznawać postać ogólną i kierunkową równania prostej; • • • • • • rozpoznawać trójkąty podobne w zagadnieniach złoŜonych wymagających doboru właściwego algorytmu; wykorzystywać (takŜe w kontekstach praktycznych) cechy podobieństwa trójkątów w zagadnieniach złoŜonych wymagających doboru właściwego algorytmu; stosować twierdzenie Talesa i twierdzenie odwrotne do twierdzenia Talesa do obliczania długości odcinków i ustalania równoległości prostych w zagadnieniach złoŜonych wymagających doboru właściwego algorytmu; obliczać odległość dwóch punktów w zagadnieniach złoŜonych wymagających doboru właściwego algorytmu; wyznaczać równanie prostej przechodzącej przez dwa dane punkty (w postaci kierunkowej lub ogólnej) w zagadnieniach złoŜonych wymagających doboru właściwego algorytmu; wykorzystywać interpretację geometryczną układu równań pierwszego stopnia z dwiema • • • • • niewiadomymi w zagadnieniach złoŜonych wymagających doboru właściwego algorytmu; narysować prostą określoną równaniem ogólnym albo kierunkowym w sytuacjach typowych wymagających uŜycia jednego algorytmu; rozwiązywać układy równań stopnia pierwszego z dwiema niewiadomymi; wyznaczać równanie prostej przechodzącej przez dwa dane punkty (w postaci kierunkowej lub ogólnej)w sytuacjach typowych wymagających uŜycia jednego algorytmu; sprawdzać, czy dana para liczb spełnia układ dwóch równań stopnia pierwszego z dwiema niewiadomymi; wykorzystywać interpretację geometryczną układu równań pierwszego stopnia z dwiema niewiadomymi w sytuacjach typowych wymagających uŜycia jednego algorytmu; Nierówności stopnia pierwszego z dwiema niewiadomymi i ich układy • • interpretować graficznie nierówność liniową z dwiema niewidomymi w sytuacjach typowych wymagających uŜycia jednego algorytmu; interpretować graficznie układy nierówności liniowych z dwiema niewiadomymi w sytuacjach typowych wymagających uŜycia jednego algorytmu; • • interpretować graficznie nierówność liniową z dwiema niewidomymi w zagadnieniach złoŜonych wymagających doboru właściwego algorytmu; interpretować graficznie układy nierówności liniowych z dwiema niewiadomymi w zagadnieniach złoŜonych wymagających doboru właściwego algorytmu;