ON THE ORIGIN OF STRATA-BOUND Zn

Transkrypt

ON THE ORIGIN OF STRATA-BOUND Zn
Annales Societatis Geologorum Poloniae (1998), vol. 68: 267-278.
ON THE ORIGIN OF STRATA-BOUND Zn-Pb ORES
IN THE UPPER SILESIA, POLAND
Maria SASS-GUSTKIEWICZ1 & Stanisław DŻUŁYŃSKI2
1 Faculty o f Geology, Geophysics and Environment Protection, University o f Mining and Metallurgy, al. Mickiewicza 30,
30-059 Kraków, Poland
2
Institute o f Geological Sciences, Jagiellonian University, ul. Oleandry 2a, 30-063 Kraków, Poland
Sass-Gustkiewicz, M., & Dżułyński, S., 1998. On the origin o f strata-bound Zn-Pb ores in the U pper Silesia, Poland.
Ann. Soc. Geol. Polon., 6 8 : 267-278.
A bstract: In view o f the renewed discussion on the origin o f U pper Silesian Zn-Pb ores we give som e comments
on this subject. In our opinion the recurrently invoked post-Jurassic age o f these deposits is at variance with
geological facts w hich point to pre-Jurassic age. The source o f metal-bearing solutions could be looked in deeper
parts o f the E arth’s crust, presumably in Paleozoic rocks, or in older accumulations o f ore deposits regenerated
during Triassic reorganization o f crustal plates.
A b strak t: W naw iązaniu do wznowionej dyskusji nad pochodzeniem i wiekiem górnośląskich złóż rud Zn-Pb
autorzy uzasadniają pogląd, że przypisywanie im po-jurajskiego wieku jest sprzeczne z faktami geologicznymi,
które wskazują na ich przed-jurajski wiek. Źródeł roztworów metalonośnych można się dopatrywać w głębszych
częściach skorupy ziemskiej prawdopodobnie w paleozoicznych skałach, bądź w starszych złożach kruszców,
zregenerowanych podczas przemieszczania się kier globalnych w triasie.
K ey w ords: M VT deposits, age o f mineralization, derivation o f ore fluids.
Manuscript received 7 January 1999, accepted 18 January 1999
INTRODUCTION
GEOLOGIC SETTING
The strata-bound Zn-Pb sulfide ores in the Triassic of
Upper Silesia belong to the category o f Mississippi Valleytype deposits (abbreviated to MVT deposits). These depos­
its were once designated as “Upper Silesia - Mississippi
Valley type deposits” (Dunham, 1950). Recently, however,
they are described as “Silesia-Cracow ” ores. As in our ear­
lier publications, in this paper we return to the name “Upper
Silesian ores”, unless the designation “Silesia-Cracow” is
quoted in excerpts from other publications.
The origin o f Upper Silesian deposits is still open to dis­
cussion. Time and again contradictory ideas on this subject
have been advanced, largely because some investigators as­
cribe negligible importance to certain geological data that
are at variance with their preconceived ideas or because o f
insufficient understanding o f geological setting of these
ores. The dispute is centered on the following subjects: 1 relationship o f ores to their karst receptacles; 2 - relation­
ship o f ore bodies to tectonic features o f the district; 3 - age
of ore emplacement; 4 - derivation o f ore fluids, their driv­
ing mechanism and routes o f migration; 5 - source o f base
metals.
The Triassic sequence o f Upper Silesia is separated
from overlying Jurassic and underlying Paleozoic rocks by
major unconformities o f regional extent. The sequence be­
gins with non-marine sandstones, conglomerates and
claystones (Bunter). In the ore district, the thickness o f non­
marine sediments varies from zero to 20 m, but to the south­
east, it may amount up to 1500 m (Moryc, 1971). The non­
marine sediments are followed by 300 to 400 m thick se­
quence o f Muschelkalk limestones and early diagenetic
dolostones deposited, to a considerable extent, under oxidiz­
ing and high energy conditions. These shallow-water car­
bonates, in turn, are covered, with a slight unconformity, by
red non-marine Keuper claystones. The claystones contain,
locally, pure lacustrine limestones, the so called “Woźniki
limestones” (Roemer, 1870), which are interpreted in terms
o f hot spring deposits (Bogacz et al., 1970).
In most o f Upper Silesia, the Triassic overlies almost
flat-lying Upper Carboniferous Coal Measures. However,
along the north-eastern margin o f the Upper Silesian basin,
the Triassic covers with a transgressive overlap the irregular
paleorelief (change o f elevation up to 300 m) o f folded
Lower Carboniferous and Devonian carbonates (e.g. Alexandrowicz, 1971; Wyczółkowski, 1971, 1974), whose
basement consists o f Lower Paleozoic sedimentary, metamorphic and igneous rocks (e.g. Wieser, 1957; Ekiert, 1971;
268
M. SASS-GUSTKIEW ICZ & S. DŻUŁYŃSKI
m ian p o ly m e ta llic v e in -ty p e m in e ra liz a tio n , w a s d ire c tly re ­
la te d to in te n siv e te c to n ic s a n d ig n e o u s a c tiv ity (e.g.
G ó rec k a, 1972; H a ra ń c z y k , 1979, 1984; G ó re c k a & N o w a k ­
o w sk i, 1979). T h e se c o n d , stra ta -b o u n d m in eralizatio n ,
c o m p o se d ch iefly o f sp h ale rite , g a le n a a n d iro n su lfid es, is
c o n fin e d to M id d le T ria ssic c a rb o n a te s (M u sc h e lk a lk ). T he
last, e c o n o m ic a lly u n im p o rta n t m in e ra liz a tio n , o cc u rs in Ju ­
ra ssic lim esto n e s a n d co n sists m a in ly o f iro n su lfid es, g a ­
len a an d, lo ca lly , o f in s ig n ific a n t a m o u n ts o f sp h alerite.
T h is m in e ra liz a tio n is g e n e tic a lly re la te d to E a rly T ertiary
fau lts w h ic h b e c a m e tru n c a te d d u rin g th e P a le o g e n e p lan atio n . T h e N e o g e n e fau lts w h ic h are c le a rly m a rk e d as h orsts
a n d g ra b e n s in th e p re s e n t to p o g ra p h y o f th e C ra c o w U p ­
lan d (D ż u ły ń sk i, 1953) are b arre n o f o re m in erals.
A lth o u g h th e fo llo w in g d isc u ssio n is c h ie fly c o n c ern ed
w ith ores in th e M u s c h e lk a lk , th e e x iste n c e o f e a rly T ertiary
fa u lt-h o ste d m in e raliz a tio n s sh o u ld b e k e p t in m in d , b e ­
c a u se o f its b e a rin g o n th e c o n tro v e rsie s c o n c e rn in g th e o ri­
gin a n d age o f stra ta -b o u n d o res in T ria ssic c a rb o n ate s.
Fig. 1.
Distribution o f U pper Silesian Zn-Pb strata-bound ores
in relation to major Paleozoic fracture zones and faults presented
on a background o f schematic geological map w ithout m inor tec­
tonic features and Cainozoic strata. Paleozoic tectonics simplified
after Herbich (1981) and M orawska (1997). 1 - Cretaceous; 2 Jurassic; 3 - Triassic; 4 - Permian; 5 - Carboniferous; 6 - De­
vonian; 7 - Carpathians C retaceous-Tertiary; 8 - Zn-Pb ore de­
posits; 9 - fracture zones and major faults; 1 0 - Carpathian nappes.
KLFZ - the K raków -Lubliniec Fracture Zone; TGFZ - the Tar­
nowskie Góry Fault Zone; USF - the Upper Silesian Fault
R yka, 1978, B u k o w y , 1994). T h e se ro c k s m ak e u p the
W N W -E S E tren d in g lin e a m e n t (R u lsk i, 1973), a lo n g th e so
called K ra k ó w -M y sz k ó w stru ctu ra l e le v a tio n (K o ta s, 1982,
1985). T o th e w est o f M y s z k ó w th is e lev a tio n tu rn s w e st­
w ard s and jo in s th e W - E tre n d in g K ra k ó w -L u b lin ie c F ra c ­
ture Z o n e F ig. 1 (M o ra w sk a , 1997). T h is fra c tu re zone
seperats th e M a ło p o lsk a M a s s if fro m th e U p p e r S ile sia n
M a s sif (e.g., B elk a & S ie w n ia k -M a d e j, 1996). It is re a s o n ­
able to in teg rate the ab o v e m e n tio n e d fra c tu re z o n es into
one K ra k ó w -L u b lin ie c lin e a m e n t (B u ła & Ja c h o w ic z , 1996;
M o raw sk a, 1997). In its p re s e n t fo rm , th e K ra k ó w -L u b ­
liniec lin e a m e n t (a b b re v ia te d to K L lin e a m e n t) is a V a risc an
structure. It in clu d es, h o w e v e r, th e relics o f C a le d o n ia n
stru ctu res an d is c h a ra c te riz e d b y th e p re se n c e o f late P ale o ­
zoic in tru siv e an d e x tru siv e ro ck s. T h is lin e a m e n t o r fra c ­
tu re zo n e d elin eates th e n o rth e rn a n d n o rth -e a ste rn b o rd e r o f
the U p p er S ilesian b a sin a n d re p re se n ts a seg m e n t o f th e
tran sco n tin en tal “H a m b u rg -C ra c o w ” fa u lt zo n e (O b erc,
1993; Ż ab a, 1997). T h e lin e a m e n t is th o u g h t to co in cid e
w ith H e rc y n ia n sin istra l ro ta tio n re su ltin g fro m d ex tral
strik e-slip fa u lt (B o g acz & K ro k o w sk i, 1981). It sh o u ld be
b o rn e in m in d , h o w ev er, th a t th e fra c tu re zo n e in q u e stio n
ex ten d s b ey o n d K rak ó w in so u th -e a ste rn d irectio n . Its p ro ­
longation has b een re c o g n iz e d u n d e r th e C arp a th ian n ap p e s
south o f B o c h n ia in R a jb ro t (J a c h o w ic z & M o ry c , 1995).
S tartin g w ith the U p p e r P a le o z o ic , th e K ra k ó w -M y s z ­
k ów stru ctu ral elev a tio n h a s b e e n a ffe c te d b y th re e sep a rate
ep o ch s o f m in eralizatio n . T h e first, late C a rb o n ife ro u s-P e r-
THE HOST ROCK OF TRIASSIC ORES
T h e h o st-ro c k p ro p e r o f su lid e o res in th e T ria ssic is the
o re -b e a rin g d o lo m it (a b b re v ia te d to O B D ). T h is n e o so m e or
m e ta so m e o ccu rs in th e fo rm o f la te ra lly e x ten siv e , irreg u la r
o r ro u g h ly ta b u la r b o d ies w ith in u n a lte re d T ria ssic c a rb o n ­
ates (p a le o so m e ). T h e se b o d ie s are lo c a liz e d a lo n g the
so u th w e stern m a rg in o f th e K L fra c tu re zo n e a n d are a b sen t
fu rth e r to th e so u th w e st, as w e ll as o n th e e a ste rn sid e o f this
stru c tu ral elev a tio n .
T h e c ro ss-c u ttin g m e ta so m a tic c o n tac ts o f th e O B D
w ith u n a lte re d T ria ssic c arb o n a te s a n d th e p re se n c e o f iso ­
la ted re m n a n ts o f th e se c a rb o n a te s w ith in th e O B D , leave no
d o u b ts as to its se c o n d a ry , m e ta so m a tic n a tu re (e.g., B o g acz
et cii, 1972 ).
T h e O B D re s u lte d fro m su c c e siv e stag es, th ro u g h dolom itiz a tio n o f lim esto n e s an d re c ry sta lliz a tio n o f early -d iag en etic d o lo sto n es (B o g a c z et al., 1975). T h e re are at least
th ree g en e ra tio n s o f th e O B D : 1 - fin e -c ry sta llin e , d a rk d o ­
lo m ite w ith d isp e rse d iro n su lfid e s, 2 - c o arse -c ry sta llin e
ru sty d o lo m ite an d , 3 - g a n g u e d o lo m ite in v eins.
T h ese g e n e ra tio n s (see: K rz y c z k o w s k a -E v e re st, 1990)
w e re th e resu lts o f th e sam e fo rm a tiv e p ro c e ss. T h e y w ere
d ire c tly re la te d to th e tra n sfe r o f h o t m in e ra liz in g so lu tions
a n d m o b iliz e d c o n n a te o r g ro u n d w ate rs th ro u g h th e pore
sp ace o f T ria ssic p ale o a q u ife r.
T h e age o f th e O B D is p re -Ju ra ss ic , b e c a u se th e C allo v ian m a rin e se d im e n ts re st d ire c tly u p o n th e e ro d e d sur­
face o f th is d o lo m ite, th e p h e n o m e n o n a lre a d y o b serv e d by
e arly g eo lo g ists (e.g. P etra sc h e c k , 1918).
A s is th e case w ith m an y o th e r M V T d ep o sits, m o st stu­
d en ts re g a rd th e O B D as a h y d ro th e rm a l a lte ra tio n a n d there
is re lia b le ev id e n c e su p p o rtin g th is c o n c lu sio n (fo r re fe r­
e n ces a n d d etails, see: B o g a c z et a l . , 1972, 1975). A c c o rd ­
in g to so m e au th o rs, h o w e v e r, th e O B D o rig in a te d in d e ­
p e n d e n tly o f ore m in e ra liz a tio n (e.g . Ś liw iń sk i, 1969).
R ec e n tly , L e ac h et al. (1 9 9 6 a ) c la im th a t o n ly a lim ited
p a rt o f th is d o lo m ite is g e n e tic a lly re la te d to th e e m p la c e ­
m e n t o f stra ta -b o u n d su lfid e ores. T h e stra ta -b o u n d ores are
ORIGIN OF Zn-Pb ORES IN THE UPPER SILESIA
indeed re stric te d en tirely a n d e x c lu s iv e ly to th e O B D (e.g.
M ich ael, 1904; S ass-G u stk ie w ic z , 1975b, 1985; S o b c z y ń sk i
et al., 1978). O u tsid e th e m in e ra liz e d zo n e, th e T ria ssic is
d evoid o f th e O B D . It sh o u ld b e b o rn e in m in d , h o w ev er,
that d o lo m itizin g so lu tio n s w e re fo re ru n n in g th e m e ta l-b e a ring ones. T h e se latter m ig h t h a v e c o v e re d o n ly p a rt o f th e
h o st strata alread y tra n sfo rm e d in to th e o re -b e a rin g d o lo ­
m ite. B ec a u se o f th eir g re a te r sp e c ific d e n sity su ch m in e ra l­
izing so lu tio n s e m p laced o re s c h ie fly in th e lo w er p o rtio n s
o f the O B D .
A d m itted ly , there are e a rly d ia g en e tic , p re -o re d o lo stones b u t th e y in v ariab ly o c c u r as “ stra tifo rm ” b o d ies i.e.,
norm al se d im en tary bed s c o n ta in in g w ell p re se rv e d m ic ro ­
fossils an d o th er organ ic re m n a n ts w h ic h in th e O B D are
o b literated o r b lu rred b y re c ry sta lliz a tio n . T h e O B D is su ­
p e rim p o sed u p o n such d o lo s to n e s a n d sh o w s cro ss-c u ttin g
m etaso m atic co n tacts, s im ila r to th o se o b se rv e d w ith lim e ­
stones.
T h e a p p earan ce o f th e O B D h e ra ld e d th e o n se t o f ore
m in eralizatio n a n d both p h e n o m e n a w e re p a rts o f th e sam e
fo rm ative p ro cesses. T h e O B D re p re se n ts th e first lin k in th e
chain o f alteratio n s b ro u g h t a b o u t b y th e p assag e o f h o t a s­
cen d in g and m in eralizin g so lu tio n s (e.g. B o g a c z e ta l., 1970;
P rzeniosło, 1974; M o c h n a c k a & S a ss-G u stk ie w ic z, 1981).
T h erefo re, th e origin o f O B D h as b een tra d itio n a lly lin k ed
w ith the g en esis o f ores.
TEMPERATURE OF ORE
EMPLACEMENT
T he stra ta-b o u n d o res in th e U p p e r S ilesia, like m an y
o th er M V T dep o sits, are “ s h a llo w ” i.e., e m p la c e d c lo se to
the co n te m p o ra ry E a rth ’s su rfa c e . C o n se q u e n tly , th e se d e ­
posits are “te le th e rm a l” a n d te m p e ra tu re s o f th eir e m p la c e ­
m ent ran ge from 80° to 1 58°C (K o zło w sk i, 1995) or fro m
120° to 220°C (P rz en io sło , 1974). It is rea liz ed , h o w ev er,
that at g re a te r d epth, w h e re th e m in e ra liz in g fluids w ere d e ­
rived, th eir tem p eratu re m u s t h a v e b e en h ig h e r (K o zło w sk i,
1995) and p re su m ab ly in h ib ito ry to p re c ip ita tio n o f sulfides.
ORE-BODIES
A lth o u g h the o re-b o d ie s m a y a ssu m e d ifferen t p o sitio n s
in the O B D , th e y are th o u g h t to o c c u r in th ree so c a lle d “h o ­
rizo n s” (e.g., D u w en see , 1928; S o b c zy n sk i & S zuw arzyriski, 1974; S zu w arzy n sk i, 1996), th e lo w e st o f w h ich is lo ­
cated n earb y and alo n g th e lo w e rm o st m e ta so m a tic b o u n d ­
ary o f the O B D . T he o re s c o n ta in e d in th e se “h o riz o n s” o c ­
cur in the form o f re p la c e m e n t (m e ta so m a tic ), c a v ity -fillin g
and a m m o b lastic ores (see later).
T he p ro b le m o f re p la c e m e n t o res h as b e e n tre a te d in
m any p u b lic a tio n s (for re fe re n c e s a n d d etails see: e.g. B o g acz et al., 1973a; M o c h n a c k a & S a ss-G u stk ie w ic z , 1981)
and does n o t c a u se co n tro v e rsie s. C o n se q u e n tly , th ere is n o
need to dw ell on this su b je c t. C o m m e n ts, h o w e v e r, are
n eed ed on the q u estio n o f c a v ity fillin g ores.
269
CAVITY-FILLING ORES
M in e ra liz e d p arts o f th e O B D a re rid d le d w ith co u n tless
d isso lu tio n v o id s, w h ic h ta k e th e fo rm o f sh e e t-lik e , low c eilin g e d , ta b u la r a n d sp o n g e w o rk c a v itie s. T h e v o id s also
in clu d e o p en in g s p ro d u c e d b y “ k a rst te c to n ic s” (B a lw ie rz &
D zu fy n sk i, 1976) i.e., th e ro c k d istu rb a n c e s, su c h as c o l­
lap se b re c c ia s o r m in o r g ra v ity fau lts, p ro d u c e d b y d is so lu ­
tio n in d u c e d stress re d istrib u tio n . T h e a b o v e m e n tio n ed
v o id s are lin e d o r fille d w ith su lfid e o res.
In c ip ie n t sh e e t-lik e c a v itie s m a y h a v e fo rm e d d u rin g re ­
p la c e m e n t o f th e O B D b y su lfid e m in e ra ls, w h e n d isso lu tio n
ru n a h e a d o f d e p o sitio n (L in d g ren , 1918). S u ch c a v itie s ten d
to o cc u r a lo n g b e d d in g su rfa c e s, fra c tu re s o r se c o n d a ry d if­
fu sio n b a n d s (M o c h n a c k a & S a ss-G u stk ie w ic z , 1981; D zu ­
fy n sk i & S a ss-G u stk ie w ic z , 1985; D z u fy n sk i & R u d n ick i,
1986; S a ss-G u stk ie w ic z & M o c h n a c k a , 19 9 3 a).
T h e m in e ra liz e d c a v itie s in th e U p p e r S ile sia n d istrict,
as w ell as in o th e r M V T d e p o sits, a re b e st e x p la in e d in
term s o f h y d ro th e rm a l k a rst p h e n o m e n a as an o re-fo rm in g
p ro ce ss (B o g ac z e ta l., 1970; D z u fy n sk i, 1976; D z u fy n sk i &
S a ss-G u stk ie w icz , 1980, 1985; S a ss-G u stk ie w ic z et al.,
1982; S ass-G u stk ie w ic z, 1985). T h is c o n c e p t is b a se d on
th ree p rem isses: 1. th e o res in fillin g o r lin in g th e v o id s are
p re c ip ita te d fro m h y d ro th e rm a l so lu tio n s, 2 . th e v o id s se rv ­
in g as o re re c e p ta c le s are o f d isso lu tio n o rig in and, 3. the
v o id s an d o res re sid e n t in th e m a re fo rm e d c o n te m p o ra n e ­
o u sly o r p e n e c o n te m p o ra n e o u s ly b y th e sam e fo rm ativ e
p ro cess.
T h e te rm “ h y d ro th e rm a l k a rs t” is n o w w e ll e sta b lish e d
in k a rst scie n c e s (e.g. K u n sk y , 1957; O z o ra y , 1961; M a k si­
m o v ic h , 1969, D zu fy n sk i 1976; Ja k u c s, 1977; R u d n ick i,
1979; D u b ly a n sk i, 1995). C a v ity m a k in g b y m e ta l-b e a rin g
h y d ro th e rm a l so lu tio n s h as also b e e n su g g e ste d b y sev eral
o re-g e o lg ists, e ith e r as an alte rn a tiv e (e.g ., P a rk & C an n o n ,
1943) o r e x p lic it e x p la n a tio n o f c a v ity -fillin g o res (e.g.
P o se p n y , 1894; M c C le lla n d & W h ite b re a d , 1965). T o this
c a te g o ry o f p h e n o m e n a b e lo n g th e c a v ity -fillin g su lfid e ores
in th e U p p e r S ilesian d istric t (B o g a c z et a l , 1970; SassG u stk ie w ic z, 1974, 1975b). T h e in te rp re ta tio n th a t m in e ra l­
ized cav itie s w e re p ro d u c e d b y o re b e a rin g so lu tio n s finds
its stro n g e st su p p o rt in th e so lu tio n c o lla p se b rec cia s w h ich
are a m o n g im p o rta n t o re re c e p ta c le s. T h e k a rstic o rig in o f
th ese b re c c ia s is testifie d b y th e fo llo w in g featu res:
1. T h e lo w e rm o st b o u n d a rie s o f b re c c ia s are d isso lu tio n
su rfac e s c o v e re d w ith m in e ra liz e d c a v e se d im e n ts m a d e up
o f g ra in s o f d isin te g ra te d d o lo m ite a n d sp h a le rite , in so lu b le
re sid u als, cla stic frag m en ts o f o res a n d h o st ro ck , an d idiom o rp h ic su lfid e c ry sta ls (B o g a c z e t al., 1973b; S a ss-G u st­
k iew ic z , 1975a, 1996).
2. T h e u p p e r an d lateral b o u n d arie s o f b re c c ia s are g ra ­
d atio n al, w h e re b y th e ru b b le o f a n g u la r d o lo m ite b lo c k s in
th e c e n te r o f b re c c ia b o d ies p a sse s th ro u g h c ra c k le b re ccias
into a n e tw o rk o f m in e ra liz e d fra c tu re s. A b o v e th e h ig h -d o m a l b re c c ia b o d ie s th e m in e ra liz e d fissu res are c o m m o n ly
a rra n g e d in p re ssu re a rc h e s (S a ss-G u stk ie w ic z , 1974).
3. In p la n v iew , th e b re c c ia s a re h ig h ly irre g u la r (S assG u stk ie w ic z, 1975b).
4. T h e ro c k fra g m e n ts m ak in g u p th e b re c c ia b o d ie s are
d e v o id o f slic k e n sid e d su rfa c es o r te c to g ly p h s.
270
M. SASS-GUSTKIEW ICZ & S. DZULYNSKI
T h e m in e ra liz e d b re c c ia s w e re fo rm ed sy n c h ro n e o u sly
an d /o r p e n e c o n te m p o ra n e o u s ly w ith th e e m p la c e m e n t o f
o res from an alte rn a tin g su c c e s sio n o f b re c c ia tio n a n d m in ­
eralizatio n ep iso d es in w h ic h th e su c c e ssiv e ly y o u n g e r o re
m in erals e n v e lo p e d th e c la stic p ro d u c ts o f e a rlie r b re c c ia ­
tion an d m in e ra liz a tio n e p iso d e s (S a ss-G u stk iew ic z ,
1975b). A s se e n in p la n v ie w , th e b re c c ia b o d ie s rev eal c o n ­
cen tric a n d zo n al a rra n g e m e n t, w ith su c c esiv ely y o u n g e r
stages o f m in e ra liz a tio n c o v e rin g p ro g re ssiv e ly m o re e x ­
te n d e d areas. Such a re la tio n sh ip im p lie s th a t b o th th e k a rst
recep tacles an d th e o res re s id e n t in th e m are p ro d u cts o f th e
sam e fo rm ativ e p ro cesse s a n d th a t th e ir co e x iste n c e in sp ace
is n o t d ue to an a c c id e n ta l su p e rp o sitio n o f u n re la te d ev en ts.
T his co n clu sio n can b e e x te n d e d to c o v e r th e u n c o lla p se d
m in e ra liz e d k arst cav ities. T h e b a n d e d o re c ru stifica tio n s
pass from in terfrag m en ta l v o id s o f th e b re cc ia s into su ch
cav ities w ith o u t in terru p tio n .
S ig n ifican tly , th e m in e ra liz e d k a rst cav ities seld o m , if
ever, o c cu r in lim esto n es. T h is b e h a v io u r m ay b e e x p lain e d
by th e in creased p e rm e a b ility o f c o a rse -c ry sta llin e O B D
and by th e fact th at a t te m p e ra tu re s a b o v e 4 0 °C , th e d o lo ­
m ite is m o re so lu b le th a n lim e sto n e (M a n d y , 1945, fide
Jak u cs, 1977).
T h e d isso lu tio n m o tiv a te d o rig in o f m in e ra liz e d b re c ­
cias in the T riassic stra ta -b o u n d d e p o sits is ig n o red , m in i­
m ized o r re je c te d by au th o rs w h o in sist on th e ir tru e te c to n ic
d eriv atio n (e.g., K ib itle w sk i, 1993; S zu w arzy n sk i, 1983,
1993). T h e p re v io u sly in d ic a te d c h a ra c te ristic fe a tu re s o f
the b re ccias in q u estio n , h o w e v e r, are in c o m p atib le w ith
th eir alleg ed tru e te c to n ic orig in .
O u r in te rp re tatio n is a lso p a rtly q u estio n e d b y A m e ri­
can in v estig ato rs. T he m o o t p o in t in th e d isp u te is th e p re s­
ence o r the alleg ed p re s e n c e o f “p re -o re ” b reccias in the
O B D , p ro d u c e d by d isso lu tio n m o tiv a te d co llap se, in d e­
p en d e n tly o f the tra n sfe r o f m in e ra liz in g so lu tio n s. L e ach et
al. (1 9 9 6 a) use the term “p re -o re b re c c ia ” to d e scrib e “ d is­
solution c o llap se b re c c ia s w h ich lack d ia g n o stic ev id e n c e o f
in v o lv em en t o f eith er m e te o ric o r h y d ro th e rm a l flu id s an d
w h o se fo rm atio n p re d a te s th e e m p la c e m e n t o f o re m in e ra ls”
(I.e. p. 4 5 ) T h e ab o v e m e n tio n e d au th o rs c o n c lu d e th at
“m an y o re -b e a rin g b re c c ia s in th e S ile sia n -C ra c o w reg io n
are R E P L A C E M E N T B R E C C IA S (c a p ita l letters b y th e
p resen t au th o rs) th a t a re th e re su lt o f su p erp o sitio n o f ore
stage d isso lu tio n an d h y d ro th e rm a l b re c c ia tio n on a p re -o re
b reccia and the selectiv e re p la c e m e n t o f p re -o re k a rst b re c ­
cias by su lfid e s” (I.e. p. 4 6 ). In m a trix -su p p o rte d b reccias,
the m atrix is p re fe re n tia lly su b jec te d to d isso lu tio n a n d r e ­
p lace m en t, b u t from th is it d o e s n o t fo llo w th a t th e m etaso m atic p ro c e ss is su p e rim p o se d u p o n th e p re -o re b re c c ia u n ­
re la te d to th e tran sfer o f m in e ra liz in g so lu tio n s (see b elo w ).
L each et al. (1 9 9 6 a) su g g e st th ree p o ssib ilitie s fo r th e
d e v e lo p m e n t o f m in e ra liz e d b re c c ia s in th e O B D : 1 - m e te ­
oric karst sy stem d ev e lo p e d p rio r to th e in tro d u c tio n o f orefo rm in g flu id s w hich a lte re d a n d e n la rg e d th e o rig in al, m e ­
teo ric c o llap se b reccias, 2 - th e p re -o re b re c cia s d e v elo p e d
from an e a rlie r h y d ro th e rm a l ev en t, w h ich w as u n re late d to
ore em p la c e m e n t and, 3 - h y d ro th e rm a l k a rst m ig h t h av e
form ed d u rin g the initial in tro d u c tio n o f o re -fo rm in g flu id s
b u t p rio r to the d e p o sitio n o f su lfid e s (I.e. p .4 6 ). T h e p o ss i­
b ilities su g g ested h av e a lre a d y b ee n d isc u ssed , in a so m e ­
w h a t sim ila r w ay , b y D z u ly n sk i & S a ss-G u stk ie w ic z (1985,
p .4 0 0 ).
T h e ab o v e liste d p o ss ib ilitie s re q u ire th e fo llo w in g
co m m en ts:
ad 1. In d e e d b o th , th e u n a lte re d T ria ssic h o st stra ta and
th e O B D re v e a l m e te o ric k a rs t fe a tu re s b e lo n g in g to the
th re e p e rio d s o f m e te o ric k a rstific a tio n : p re -Ju ra ssic , L o w er
T e rtia ry , an d P le is to c e n e -R e c e n t. T h e se m e te o ric k a rs t fe a ­
tu re s d ev e lo p e d u n d e r o x id iz in g co n d itio n s. O n th e o th er
h a n d , th e m in e ra liz e d k a rst fe a tu re s in th e O B D d o n o t show
an y ev id e n c e o f h a v in g b e e n d e v e lo p e d u n d e r o x id izin g
co n d itio n s a n d n o co e v a l k a rst b re c c ia s o f th is ty p e hav e
e v e r b een o b se rv ed in th e h o st s tra ta o u tsid e th e O B D . T he
sh e e t cav itie s w h ic h are c h a ra c te ristic o f h y d ro th e rm a l karst
o res (rib b o n o res) are also a b se n t in n o n -m in e ra liz e d c ar­
b o n ate s. T h e rib b o n ores, in te rp re te d as p ro to -k a rst featu res,
are re p re se n ta tiv e s o f th e first sta g e in d e v e lo p m e n t o f h y ­
d ro th e rm a l k a rst p h e n o m e n a (S a ss-G u stk ie w ic z , 1993;
D z u ly n sk i & S a ss-G u stk ie w ic z , 1993). T h e m in e ra liz e d c o l­
lap se b re cc ia s re p re se n t th e m a tu re stag e o f su ch d e v e lo p ­
m en t. S u m m in g u p , th e m in e ra liz e d b re c c ia s re s u lte d p e n e ­
c o n te m p o ra n e o u sly o r sy n c h ro n o u sly w ith d e p o sitio n o f
ores a n d h av e n e v e r b e en p re -o re m ete o ric k a rst featu res.
In th e O B D , th e re are L o w e r T e rtia ry sin k h o le s c o n ta in ­
in g cla stic frag m e n ts o f o res d e riv e d fro m e a rlie r m in e ra li­
zatio n s. S uch sin k h o le s w e re p ro d u c e d d u rin g su b a eria l ero ­
sion fo llo w in g th e re tre a t o f th e C re ta c e o u s sea. S o m e o f
th e m b e c a m e in n u d ate d b y th e M io c e n e tra n sg re ssio n and
p a rtly fille d w ith m a rin e se d im e n ts (P a n e k & S z u w arzy n sk i,
1975). I f th is is th e case, th e sin k h o le s m a y co n ta in re m o ­
b iliz e d g a le n a c ry sta ls in sh ells o f M io c e n e m o llu scs a t­
ta c h e d to th e w a lls o f sin k h o le s (B o g a c z et a l , 1973b).
ad. 2 T h e re is n o e v id e n c e th a t m in e ra liz e d k a rst c a v i­
ties in th e O B D d e v e lo p e d fro m an e a rlie r h y d ro th e rm a l
flu id ev en t, u n re la te d to th e o res in th em .
ad. 3 T h e th ird p o ssib ility is n o t at v a rian c e w ith the
c o n c e p t o f h y d ro th e rm a l o re -fo rm in g k a rst p ro ce sse s. T he
fo rm a tio n o f v o id s p re c e d e d s h o rtly th e e m p la c e m e n t o f
ores, b u t b o th p ro c esses w e re p e n e c o n te m p o ra n e o u s s and
p a rts o f th e sam e fo rm a tiv e ev en t.
B rie f c o m m e n ts are n e e d e d o n b re c c ia s w h ic h a p p e a r to
b e o n ly p a rtly m in eralize d . S u ch b re c c ia s m a y g iv e th e im ­
p re ssio n th a t m in e ra liz in g so lu tio n s in v a d e d th e p re -o re m e ­
teo ric k a rst stru ctu res. M in e ra liz in g so lu tio n s, h o w ev er,
m ay d e p o sit su lfid es in m o re p e rm e a b le p arts o f b reccias,
lea v in g o th e r p a rts o f th e b re c c ia s a p p a re n tly b arre n o f ore
m in erals. N e v e rth e le ss, su ch se e m in g ly b a rren p o rtio n s in­
v a ria b ly co n ta in sm all am o u n ts o f d is p e rse d su lfides.
L arg e c o llap se b re c c ia b o d ie s in th e U p p e r S ile sia n re ­
g io n are p re fe re n tia lly lo c a te d a lo n g th e lo w e rm o st m e taso m atic b o u n d a ry o f th e O B D . T h is b o u n d a ry ap p ro x im ates
th e to p lim it o f th e G o g o lin b e d s w h ic h c o n sist o f fin e -c ry s­
tallin e , th in - to m e d iu m -b e d d e d lim e sto n e s in te rc a late d w ith
m arls. T h e G o g o lin b e d s p ro v id e d an im p e rm e a b le flo o r for
h o riz o n ta lly sp re ad in g d o lo m itiz in g so lu tio n s. T h e fo llo w ­
ing, h e a v y a n d ag g re siv e m in e ra liz in g so lu tio n s also m o v ed
a lo n g su ch an in te rfa c e , ta k in g a d v a n ta g e o f an in cre ased
p o ro s ity o f th e c o a rse -c ry sta llin e O B D .
C o n v e rg in g in m o re p a ssa b le c o n d u its, th e se so lu tio n s
c o u ld d isso lv e siz ab le c a v e rn s w h ic h w e re su b je c t to ro o f
ORIGIN OF Zn-Pb ORES IN THE U PPER SILESIA
failures in b e d d e d and c ra c k e d d o lo m ite s. In a sm u c h as th e
r o o f failu res p ro p a g a te d u p w a rd s, in v o lv in g su c c essiv ely
the o v e rly in g d o lo m itic b e d s, th e ro c k fra g m en ts m a k in g up
th e b reccia b o d y co n sist e x c lu s iv e ly o f th e O B D .
BRECCIAS NOT RELATED TO ROOF
FAILURES OF CAVERNS
N o t all o f m in e ra liz e d b re c c ia s in th e O B D m ay b e a t­
trib u te d to ro o f failu re s o f c a v e rn s. W ith h y d ro th e rm a l k arst
p h en o m en a, n e w b re c c ia tin g fa c to rs co m e in to a ctio n su ch
as “h y d rau lic fractu rin g ” a n d “h y d ra u lic e x p lo sio n s” (M u f­
fler et al., 1971; P h illip s, 1972). T h e h y d ro th e rm a l e x p lo ­
sions resu lt fro m rap id tra n sfo rm a tio n o f w a te r into steam
an d m a y d isru p t the c o n fin in g ro ck . A lso a su d d e n d ro p in
p ressu re m ay b u rst it a p a rt w ith th e o n se t o f d ila ta n c y (e.g.
B ridgem an, 1952; K en ts, 1964). T h e a b o v e m e n tio n e d p ro c ­
esses h av e p la y e d a d o m in a n t ro le in th e fo rm a tio n o f brecciated, v ertical ore v ein s w h ic h se rv e d as c h a n n e lw a y s for
ascen d in g ore fluids (D z u fy n sk i, 1976; D zu fy n sk i & S assG u stk iew icz 1978; 1985). T h e y also m ig h t h a v e o p e ra ted as
c o n trib u to ry a g e n t in b re c c ia tio n o f th e h o st d o lo m ite. T h e
p resen t w riters, h o w ev er, d o n o t c o n sid e r th e h y d ro te c to n ic s
as the key facto r in th e fo rm a tio n o f larg e b re c c ia b o d ie s in
the O B D , as su g g ested b y Ja ro sz e w s k i (1 993).
B recciatio n is also p ro m o te d b y th e d isru p tin g a ctio n o f
m inerals c ry stallizin g in fra c tu re s (e.g. “b re c h e d ’ecla tem e n t” - G ig n o u x & A v n im e le c h , 1937 o r “ ch e m ica l b re c ­
c ia tio n ” - S aw kins, 1969). T h is p ro c e s s is p a rtic u la rly c o m ­
m on in the O B D w h ich is p a rtly a ffe c te d b y so lu tio n a l d is­
agg reg atio n . T h e so lu tio n a l d isa g g re g a tio n m a y b e p a rt o f
h y d ro th erm a l k a rst p h e n o m e n a . It is e ffe c te d b y d isso lu tio n
o f crystal edges, w h e re b y th e so lid ro c k is d e lith ifie d and
tra n sfo rm ed into a soft, stru c tu re le s s m ass o f in c o h e re n t or
sem i-co h e ren t grains in w h ic h all tra c e s o f p rim a ry stru c ­
tures are o b literated .
T he d isag g reg ated g ra in s a n d c la y e y resid u a ls w h ich
ten d to a ccu m u late at th e b o tto m o f c a v e rn s m a y b e re d e p o ­
sited by th e flo w o f m in e ra liz in g so lu tio n s (B o g a c z et al.,
1973b). M assiv e or p ie c e m e a l r o o f failu re s also stir th e u n ­
c o n so lid ated b o tto m m a te ria ls g iv in g rise to clo u d s o f su s­
p en sio n s w h ich m ay sp re ad la te ra lly in th e form o f su b te rra ­
nean tu rb id ity cu rren ts (D zu fy n sk i & S ass-G u stk ie w ic z ,
1980).
D isag g reg ated d o lo m ite s, re fe rre d to as “ sa n d e d ” (L o w ­
erin g et al., 1949) or “p u lv e ru le n t” (Jak u c s, 1977) p ro v id e
fav o rab le co n d itio n s fo r an u n h in d e re d g ro w th o f su lfid e
m inerals. S uch m in erals te n d to line th e b o u n d a rie s o f d isa g ­
g regated c a rb o n ates in th e fo rm o f d ru sy in cru sta tio n s p ro ­
je c tin g w ith th e ir free c ry s ta l fac e s in to th e d isa g g re g ate d
m ass o f grains. T his ty p e o f o re m in e ra liz a tio n , first d e ­
scribed fro m th e U p p e r S ilesia n o res (B o g a c z et a l., 197 3 b ),
has b ee n in d icated as “a m m o b la s te sis” (D zu fy n sk i & S assG u stk iew icz, 1985).
S o lu tio n al d isag g re g a tio n m ay p ro c e e d c o n cu rren tly
w ith the am m o b lastesis a n d m a y c o n tin u e a fte r th e e m p la c e ­
m en t o f ore m in erals. In su c h situ a tio n s, th e su lfid e in c ru sta ­
tions b eco m e su sp en d ed in a m a s s o f in c o h e re n t g rain s and,
d ev o id o f so lid su p p o rt m a y b re a k into still sm a lle r fra g ­
271
m en ts. A lso th e p re e x istin g b e d d in g -c o n tro lle d o re v ein s are
a ffe c te d by su ch b re c c ia tio n . W ith p ro g re ssin g d isag g reg a­
tio n th e y b e c o m e fra g m e n te d a n d d isp la c e d , th o u g h so m e o f
th e m are still a lig n e d in strin g s, m a rk in g th e o rig in al p o si­
tio n s o f v ein s (D ż u ły ń sk i & S a ss-G u stk ie w ic z , 1978 - Fig.
2, 1 9 8 5 - F i g . 26).
F ra g m e n ts o f d o lo m ite d e ta c h e d fro m sid e -w alls o f c o l­
lapse b re c c ia s o r c av ities, w h ic h are e n tire ly e n c lo se d in soft
m a trix o f in c o h e re n t g rain s, are s u b je c t to sp e c ific ty p e o f
“ se lf-b re c c ia tio n ” . S u ch fra g m e n ts, w e a k e n e d b y in cip ien t
d isag g reg a tio n , y ie ld to w e a k stra in s a n d b reak in to sm aller
p ie ce s a lo n g th e p re -e x istin g c rack s. T h e se d isc o n tin u ities
are w id e n e d b y in je c te d d isa g g re g a te d g rain s a n d d isru p tin g
g ro w th o f au tig e n ic su lfid e c ry sta ls a n d fo rm a k in d o f “m i­
c ro -c ra c k le b re c c ia s (D ż u ły ń sk i & S a ss-G u stk ie w ic z , 1985;
S a ss-G u stk ie w ic z et al., 1982 - F ig . 23).
RELATIONSHIP OF ORE BODIES
IN TRIASSIC CARBONATES TO
TECTONIC FAULTS
A k e y te n e t o f m a n y in te rp re ta tio n s o f stra ta -b o u n d ores
in th e T ria ssic o f U p p e r S ilesia is th a t th e te c to n ic faults
w h ic h a ffe c t th e h o st stra ta h a v e p la y e d an im p o rta n t ro le in
th e fo rm a tio n an d d istrib u tio n o f o re b o d ie s (e.g. G ałk iew icz, 1983; S z u w a rz y ń sk i, 1993; K ib itle w sk i & G ó reck a,
1988; K ib itle w sk i, 1993). T h e p o ss ib ility th a t so m e o f th ese
fau lts h a v e b e e n a sso c ia te d w ith e a rly C im m e rian m o v e ­
m en ts h as also b e e n in v o k e d (e.g. P ie k a rsk i, 1965; S zu w ar­
z y ń sk i, 1983). T h e d ire c t re la tio n sh ip o f th e stra ta -b o u n d
o re to p re- o r sy n -o re te c to n ic s is n o t clea rly re c o rd e d in
m in e w o rk in g s b u t ap p e ars fro m sta tistic a l a n a ly ses o f d is­
trib u tio n s o f th e o re b o d ie s (B la jd a , 1993; S a ss-G u stk iew icz
et a l , 1997).
T h e U p p e r S ilesia n reg io n w a s a ffe c te d b y e arly C im ­
m eria n m o v e m e n ts w h ic h a p p ea r to b e re c o rd e d b y so m e
se d im e n ta ry stru c tu re s (S zu lc, 1993). T h e e a rly C im m erian
fau lts m ig h t h a v e a n d p re s u m a b ly d id fo llo w th e p a tte rn o f
e a rlie r te c to n ic fra c tu re s a lth o u g h th e ir a m p litu d e w a s m u ch
sm a lle r th a n th a t o f th e V a risc a n fau lts (H e rb ic h , 1981;
G ó rec k a, 1993). H o w e v e r, th e m a jo rity o f fau lts w h ic h tra n ­
sect a n d d isp la c e th e stra ta -b o u n d o re b o d ie s in th e T riassic
are p o st-o re p h e n o m e n a re la te d to E a rly T e rtia ry a n d N e o ­
g ene te c to n ic s. A s n o te d , th e e a rly T e rtia ry fau lts w e re a ss o ­
c iate d w ith lo cal re g e n e ra tio n a n d re m o b iliz a tio n o f p re e x ­
istin g su lfid e ores an d w e re re sp o n sib le fo r in sig n ifican t
fa u lt-h o ste d m in e ra liz a tio n o f Ju ra ssic lim esto n es.
AGE OF STRATA-BOUND MINERALIZA­
TION IN TRIASSIC CARBONATES
A g e o f th e su lfid e m in e ra liz a tio n in T riassic c a rb o n ates
h as lo n g b e e n a b o n e o f c o n te n tio n b e tw e e n p ro p o n e n ts o f
“ sy n g e n e tic ” an d “ e p ig e n e tic ” in te rp re ta tio n s. In sp ite o f
p ro lo n g e d d isc u ssio n s n o c o n c e n su s o f o p in io n h a s b een
re a c h e d o n th is su b ject.
T h e sy n se d im e n ta ry n o n -h y d ro th e rm a l in te rp re ta tio n ,
o n ce p o p u la r (e .g .,G u e ric h , 1903; S ta p p e n b e c k , 1928; K eil,
272
M. SASS-GUSTKIEW ICZ & S. DŻUŁYŃSKI
1956; G ru szczy k , 1967; S m o la rsk a, 1968) is n o w g e n e ra lly
ab an d o n ed . S o m e p ro p o n e n ts o f ep ig e n e tic in terp re ta tio n s
suggest p o st-U p p er Ju ra ssic a n d /o r T e rtia ry ag e o f th e
strata-b o u n d sulfide o re s in T ria ssic c a rb o n a te s, re la tin g this
m in eralizatio n to th e “A lp in e te c to n ic s” in th e C a rp a th ian s
(e.g. A lth an s, 1891; S ac h s, 1930; H a ra ń c z y k , 1979; K o z ­
łow ski, 1995; G ó re c k a e t a l , 1 9 9 6 ;). A s an a rg u m e n t in fa ­
v o r o f su ch in terp re tatio n , th e y p o in t to th e m in e ra liz a tio n in
U p p er Ju rassic lim esto n e s lo c a te d a lo n g th e e arly T e rtia ry
faults. T h is co n c e p t h as b e e n re c e n tly a c c e p te d by A m e ric a n
in v estig ato rs (L each & V ie ts, 1993; L each et al., 1996a,
1996b; C h u rch et al., 19 9 6 ) a n d su p p o rte d b y S y m o n s et al.
(1996) on th e b asis o f p a le o m a g n e tic in v e stig a tio n s o f ore
sam ples. It sh o u ld be b o rn in m in d , h o w ev er, th a t L o w e r
T ertiary fau lt-h o sted o re s m ay be su p e rim p o se d u p o n th e
stra ta-b o u n d d eposits, w h e re th ese d ep o sits are c u t by
L o w er T e rtia ry faults. S u c h situ a tio n re q u ires p re c ise lo c a l­
ization o f sam p les an d th e ir p re s e n ta tio n a g a in st th e b a c k ­
gro u n d o f o re stru ctu res in th e sa m p lin g site. T h e sam p le s
in v estig ated , h o w ev er, d o n o t sa tisfy th is req u irem en t.
M oreov er, an y g en etic h y p o th e s is e x p la in in g th e o rig in o f
M V T -d ep o sits m u st be in a c c o rd w ith all a sp ects o f g eo lo g ic
settin g th a t ex isted a t th e tim e th e d e p o sit w e re fo rm e d
(O hle, 1980). T he T e rtia ry in te rp re ta tio n o f th e stra ta -b o u n d
ores d iscu ssed is d iffic u lt to re c o n c ile w ith fie ld e v id en c e.
A s n o ted , the stra ta -b o u n d su lfid e o res are p re -Ju ra ssic
b ecau se C allo v ian se d im e n ts re st w ith tra n sg re ssiv e o v e rlap
upon th e ero d e d su rface o f th e O B D w h ich w as fo rm ed
p en ec o n te m p o ra n e o u sly w ith th e e m p la c e m e n t o f su lfid e
ores. T he lo w erm o st n o n -m a rin e Ju ra ssic se d im e n ts have
been re p o rte d to rest o n a k a rs tifie d su rfac e o f th e O B D ,
w h ereb y the ores th e m se lv e s h av e a lre a d y b een su b jec ted to
w e ath erin g an d o x id atio n (e.g . P e tra sc h ec k , 1918; P ie k a r­
ski, 1965).
T he p re se n c e o f su lfid es in Ju ra ssic lim e sto n es g av e rise
to the co n c e p t o f m u lti-sta g e m in e ra liz a tio n e x te n d e d o v e r a
long tim e in terv al from U p p e r T ria ssic to L o w er T e rtia ry
(e.g., R ó żk o w sk i et al., 1979; S zu w a rz y ń sk i, 1983). T h e
early T e rtia ry m in e ra liz a tio n , h o w e v e r, as c o m p a re d w ith
the T riassic m in e ralizatio n , to o k p la c e u n d e r e n tire ly d iffe r­
ent tecto n ic, stru ctu ral a n d e n v iro n m e n ta l settin g s. T h is
m in eralizatio n is fa u lt-h o ste d im p o v e rish e d (S z u w a rz y ń sk i,
1983) and d o es n o t o c c u r in th e fo rm o f stra ta -b o u n d bod ies.
T he em p la c e m e n t o f s tra ta -b o u n d ores w as an e a rlie r an d
sep arate e v e n t an d not a ste p in a lo n g -la stin g m in e ra liz atio n
p ro cess, em b racin g Ju ra ssic a n d C re ta c e o u s carb o n a te s (see
later).
T he c o n c e p t th at th e stra ta -b o u n d su lfid e o res w e re em p lace d in p o st-U p p er Ju ra ssic o r p o st C re ta c e o u s tim e raises
a n u m b er o f q u estio n s w h ic h , u n d e r su ch assu m p tio n , re ­
m ain u nansverable:
1 - W h y a sc en d in g h y d ro th e rm a l so lu tio n s d id n o t
sp read la terally th ro u g h p e rm e a b le , sa n d y B a th o n ia n -C a llovian sed im en ts ?
2 - W h y d id th ey d e p o s it th e b u lk o f th e ir b ase m e ta ls in
the M u sch elk alk an d n o t in b e d d e d U p p e r Ju ra ssic o r C re ta ­
ceous carb o n ates?
3 - W hy, in Ju rassic o r C re ta c e o u s carb o n a te s is th e re
n o th in g co m p arab le to th e O B D ?
O n the o th er h and, th e p re -Ju ra ss ic age o f stra ta -b o u n d
d ep o sits e x p lain s th e b e d d in g -p a ra lle l d e p o sitio n o f oreb o d ies. T h e d o lo m itiz in g so lu tio n s fo re ru n n in g th e em ­
p la c e m e n t o f su lfid e s, c o u ld sp re a d late ra lly , ta k in g a d v a n ­
tag e o f h ig h p rim a ry p o ro sity , w ith o u t b e in g in h ib ite d o r d e ­
v ia te d b y fau lts. T h e fo llo w in g m in e ra liz in g a n d a g g resiv e
so lu tio n s u tiliz e d th e se c o n d a ry p o ro s ity o f co a rse c ry s ta l­
line te x tu re o f th e d o lo m itic n e o so m e . F in ally , th e p re -Ju ra s­
sic ag e o f m in e ra liz a tio n is c o n siste n t w ith w h a t is k n o w n o f
m a n y o th e r M V T d ep o sits, n a m e ly th e p ro x im ity o f such
d e p o sits to a re g io n a l u n c o n fo rm ity a b o v e th e h o st strata.
T h e M V T d e p o sits or, a t le a st m o s t o f th e m , w e re em p laced
c lo se to th e c o n te m p o ra ry E a rth su rface.
W e do n o t k n o w e x a c tly w h e n m in e ra liz in g so lu tio n s
sta rte d to in v ad e th e T ria ssic p a le o a q u ife r a n d h o w lo n g the
inflo w o f su ch so lu tio n s lasted . T h e tim e in te rv a l in w h ich
th e p a ssa g e o f m in e ra liz in g so lu tio n s p e rsiste d , e stim a te d by
R e p e tsk i & N a rk ie w ic z (1 9 9 6 ) as o f th e o rd e r 1,000 to 5,000
y ears, is p re su m a b ly to o sh o rt. E stim a tio n s b y L e w c h u k &
S y m o n s (1 9 9 6 ) fo r th e M V T D fro m 1 to 8 M y a p e a r to be
m o re realistic.
T h e b e g in n in g o f in flo w o f m in e ra liz in g so lu tio n s b e ­
g an a fte r m u ch , i f n o t all, o f th e M u s c h e lk a lk su c c e ssio n had
b e e n d ep o sited . It is p o ssib le th a t a c e rta in a m o u n t o f m etalb e a rin g so lu tio n s m ig h t h a v e le a k e d in to th e se a w ater. P er­
hap s, th e sm a ll q u a n titie s o f d is p e rse d su lfid es re p o rte d
fro m th e u p p e rm o st la g u n al T ria ssic se d im e n ts b e a r e v i­
d e n c e to th is e v e n t (“ d ip lo g e n e tic o re s” - L o w e rin g , 1963).
In d eed , su b m a rin e e x h a la tio n s o f o re flu id s h a v e b e e n su g ­
g e sted (E k ie rt, 1957; P rz e n io sło , 1974; H a ra ń cz y k , 1993).
H o w ev e r, th e o x id iz in g a n d h ig h e n e rg y se d im e n ta ry e n v i­
ro n m e n t o f th e M u sc h e lk a lk w a s n o t c o n d u c iv e to a n y sig­
n ific a n t a c c u m u la tio n o f su lfid e d e p o sits o n th e sea floor
(S ied le c k i, 1955; K raje w sk i, 1957). C o n se q u e n tly , the
stra ta -b o u n d d e p o sits in th e T ria ssic are e p ig en e tic w ith re ­
sp e ct to th e h o st strata, n o t b e c a u se th e o re flu id s c o u ld not
reach th e b o tto m su rfa ce , b u t b e c a u se m o st o f th e m eta ls had
p re c ip ita te d b e fo re re a c h in g th e b o tto m a n d b e c a u se o f the
lack o f su ita b le re c e p ta c le s o n th e se a flo o r (D ż u ły ń sk i &
S a ss-G u stk iew ic z , 1980).
T h e a b o v e in te rp re ta tio n d o e s n o t d e b a r th e p o ssib ilty
th a t th e in flo w o f asc e n d in g h y d ro th e rm a l so lu tio n s c o n tin ­
u ed a fte r th e re tre a t o f th e T ria ssic sea. T h e p re v io u sly m e n ­
tio n e d lacu strin e W o źn ik i lim e sto n es (K e u p e r) re p re se n t hot
sp rin g d ep o sits, as fin al p ro d u c ts o f h y d ro th e rm a l activ ity
th a t e a rlie r re su lte d in d isso lu tio n o f k a rst c a v ities a n d e m ­
p la c e m e n t o f o res (B o g a c z et al., 1970). T h e h o t w aters,
w h ic h p re c ip ita te d c a lc iu m c a rb o n a te , h o w e v e r, w e re d e ­
p le te d o f b a se m etals. S m all a m o u n ts o f d isp e rse d su lfid es
h a v e also b e en re p o rte d fro m b o th th e K e u p e r a n d R aeth ian
sed im e n ts (A ssm a n , 1948; E k iert, 1957, 1971; B e d n a re k et
al., 1983; S zu w arz y ń sk i, 1996). T h e K e u p e r clay s, h o w ­
ev er, d id n o t a c t as a d iv e rsio n a ry b a rrie r fo r m in e ra liz in g
so lu tio n s b e c a u se th ere is n o c o n c e n tra tio n o f ores b en eath
th e se clays.
F ro m th e fo re g o in g c o n sid e ra tio n s, it a p p ea rs th a t the
age o f th e stra ta -b o u n d su lfid e o res is late T ria ssic (com p,
also E k iert, 1957; P rz e n io sło , 1974). S u ch o res are “e p ig e ­
n e tic ” w ith re s p e c t to th e e n c lo s in g M u sc h e lk a lk c arb o n ates
b u t are “sy n g e n e tic ” on th e sca le o f T riassic se q u en c e as a
w h o le . T h e re is y e t a n o th e r lin e o f su p p o rt in th is resp ect.
ORIGIN OF Zn-Pb ORES IN THE U PPER SILESIA
A c co rd in g to re c e n t p re lim in a ry in v e stig a tio n b y B a n a ś et
al. (1 9 9 6 ) on illitizatio n o f sm e c tite , th e re w as a d istin c t
th erm al e v e n t by the en d o f T ria ssic tim e w h ic h re su lte d in
sig n ifican t rise o f te m p e ra tu re o f th e T ria ssic stra ta o v e rly ­
ing the U p p e r C a rb o n ife ro u s (see later). In th is c o n n e c tio n it
is to be re c a lle d that e a rly is o to p ic ag e d e te rm in a tio n s o f
ores from U p p er S ilesia b y B o ru ck i (1 9 7 8 ) h av e led h im to
c o n clu d e th a t the ran g e o f “ a n a ly tic a l e rro rs” , 4 0 an d 220
M y “im p airs th e re lia b ility ” o f th e s e d e te rm in atio n s. H o w ­
ever, the first age (40 M y ) c o rre sp o n d s to P a le o g e n e a n d th e
seco n d (22 0 M y) to th e late T riassic . T h is is in a g re e m e n t
w ith th e tw o sep arate e p o c h s o f o re m in e ra liz a tio n p o stu ­
lated by th e p re se n t au th o rs.
DERIVATION AND TRANSFER
OF MINERALIZING SOLUTIONS
T he o rig in o f ore flu id s w h ic h e m p la c e d th e su lfid e ores
in T riassic c a rb o n ates is a m a tte r o f c o n je c tu re . H y p o th e ses
co n cern in g th eir d eriv a tio n are b a se d o n p re c o n c e p tio n s
rath er than on d irect o b se rv a tio n s, b e c a u se su ch o b se rv a ­
tions are lacking.
T h e m in eralizatio n “ p e r d e sc e n d u m ” from o v erly in g
rocks (e.g. A lth an s, 1891; S ac h s, 1930; A ssm a n n , 1948) is
now ab an d o n ed , b ec a u se th e s e ro c k s are e ith e r b arre n or
co n tain too little base m e tals to a c c o u n t fo r large stratab o u n d d ep o sits. F o r sim ila r re a so n s, it is u n lik ely th a t th e
m etals h av e been d e riv e d fro m c o m p a c tio n b rin es re sid e n t
in T riassic h o st strata o r fro m re c o n c e n tra tio n o f d isp ersed
se d im en tary ore m in erals b y c irc u la tin g g ro u n d w a ters (e.g.
S tap p en b eck , 1928). T h e T ria ssic h o st stra ta d o n o t sh o w
any ev id en c es o f such c irc u la tio n .
O n one p o in t a g re e m e n t h as b e e n re a c h e d , n am e ly , th a t
the ores w ere em p la c e d b y a sc e n d in g h y d ro th e rm a l so lu ­
tions. T his is also in d ic a te d b y o re -flu id in c lu sio n s w h ic h re ­
veal the p resen ce o f v e rtic a l th e rm a l flu id g ra d ie n t p o in tin g
to the c o o lin g o f th ese flu id s to w a rd s th e E a rth ’s su rface
(K o zło w sk i, 1995). P re se n tly , th e d iscu ssio n is c e n te re d on
m igration ro u tes o f ore flu id s, th e ir d riv in g fo rc e an d th e
source o f b ase m etals.
T he m in eralizin g so lu tio n s h av e g a in e d ac ce ss to th e
M u sch elk alk th rough fo ld e d a n d fra c tu re d L o w e r P a le o zo ic
rocks o f the p re v io u sly m e n tio n e d K ra k ó w -L u b lin ie c F ra c ­
ture Z one. E v id en ce for th is is seen in v e ric a l o r su b v e rtic a l
ore veins lo cated in fa u lts a n d frac tu re s th a t tra n se c t th e se
rocks. In p lace s o f in te rse c tio n o f su ch te c to n ic d isc o n tin u i­
ties, the ore bodies m a y a ssu m e c h im n ey -, o r p ip e-lik e
shapes (K w aśn iew icz, 1932). It sh o u ld b e n o te d th a t large
accu m u latio n s o f Z n -P b o re s in T ria ssic c a rb o n a te s o c c u r
p re fe ren tially w h ere th e u n d e rly in g P a le o z o ic ro c k s are
strongly te c to n iz e d (M ic h a e l, 1904).
T he fau lts and fra c tu re s m e n tio n e d a re m a n ifesta tio n s
o f late V ariscan o ro g en y a s s o c ia te d w ith an e le v a te d h e a t
flow (B elk a & S ie w n ia k -M a d e j, 1996). A s n o ted , in v an in g
stages o f this o ro g en y , th e m o v e m e n t a lo n g th e se d isc o n ti­
nuities m ig h t have c o n tin u e d , d u rin g th e o n se t o f T ria ssic
cy cle o f se d im en tatio n (H e rb ic h , 1981), as is th e case w ith
recen t p o st-A lp in e n e o te c to n ic s . S o m e o f th e fau lts m ig h t
have been re a c tiv a te d d u rin g E a rly C im m e ria n o ro g e n y
273
(S z u w a rz y ń sk i, 1983).
M in e ra lo g ic a l c o m p o sitio n o f th e se fa u lt-h o ste d ore
v e in s in P a le o z o ic ro c k s m a y b e s im ila r to th a t o f th e stratab o u n d d e p o sits (G ó re c k a, 1973). T h e o re v ein s re v e al also
sim ilar b re c c ia tio n w h ic h is e x p la in e d in term s o f h y d rau lic
fra c tu rin g (D ż u ły ń sk i & S a ss-G u stk ie w ic z 1985). Such
b re c c ia tio n m ig h t h a v e b e en a ss o c ia te d w ith “se ism ic p u m p ­
in g ” (S ib so n e t al., 1975; S ib so n , 1987), as is th e c a se w ith
recen t, e a rth q u a k e g e n e ra te d v io le n t e x p u lsio n s o f h o t m in ­
e ra liz in g so lu tio n s (L e b e d ev , 1974).
T h e ore v e in s are p a rtic u la rly w e ll d e v e lo p e d in fo ld ed
L o w e r C a rb o n ife ro u s a n d D e v o n ia n c a rb o n a tes. T h e se c a r­
b o n a te ro c k s sto o d h ig h in p re -T ria ssic to p o g ra p h y in the
fo rm o f “k n o b s” w h ic h a re c o n sid e re d c h a ra c te ristic o f the
M V T d e p o sits (“o re -k n o b re la tio n sh ip ” - O h le, 1996). F ro m
su ch k n o b s, th e a sc e n d in g so lu tio n s co u ld e a sily cro ss the
P a le o z o ic /T ria ssic u n c o n fo rm ity a n d e n te r d ire c tly into
h o riz o n ta lly d isp o se d M u sc h e lk a lk c a rb o n a te s (A lex a n d ro w icz, 1971).
T h e fo rm a tio n o f e x te n siv e stra ta -b o u n d d e p o sits re ­
q u ires a v ig o ro u s flo w o f larg e v o lu m e s o f m e ta l-b e a rin g so ­
lutions. T o satisfy th is re q u ire m e n t su c h so lu tio n s m u st hav e
alre a d y b een m ad e a v a ila b le an d it is re a so n a b le to a ccep t
th e id e a o f d e e p -se a te d “fo ssil re s e rv o irs” as a p o ssib le
so u rces (F y fe e t al., 1978). T h e d ra in in g o f su ch reserv o irs
m u st h a v e b e en v ery ra p id an d w ith th e a p p e a ra n c e o f the
p re v io u sly m e n tio n e d a c tiv e te c to n ic fra ctu res th e o re fluids
w e re a b ru p tly re le a se d (D ż u ły ń sk i & S ass-G u stk iew icz,
1985).
D e riv a tio n o f o re -flu id s, d riv in g fo rces, th e ro u tes o f
th e ir m ig ra tio n a n d th e u ltim a te so u rc e o f b a se m e ta ls are
o p e n to d iscu ssio n . S in ce th e stra ta -b o u n d o res are p re-Ju ra ssic (see ab o v e ), b o th th e u p lift a n d th ru st o f th e C a rp a ­
th ia n n a p p es c o u ld n o t h av e b e e n th e d riv in g m e c h a n ism for
o re flu id s, as e n v isio n e d b y so m e in v e stig a to rs (e.g. S y m o n s
e ta l., 1995; L each e t al., 1 9 9 6 b - F i g . 37). T h e C a rp ath ian s
as an o ro g e n ic b elt d id n o t ex ist in T ria ssic tim e. T h e d e v e l­
o p m e n t o f th e C a rp a th ia n g e o sy n c lin e h a d o n ly ju s t b eg an
an d th e a c c u m u latio n o f th ic k ( 7 - 8 k m ) fly sc h seq u en ce
sta rted b y th e e n d o f th e Ju ra ssic (T ith o n ia n ) a n d h as c o n tin ­
ued till th e M id d le M io cen e. A t th a t tim e , th e se d im en tary
fly sc h b asin s w e re situ a te d fa r a w a y to th e south. T h e refo re
th e fo rm a tio n m o d el d e p ic te d in F ig. 37 in th e p u b lic atio n
b y L each et al., (1 9 9 6 b ), is m isle a d in g . A d m itte d ly , to the
so u th o f th e p re se n t o c c u rre n c e s o f C e n tra l E u ro p ean
M u sch e lk a lk , th e re e x iste d a la n d a re a w h ic h m ig h t have
g iv en rise to to p o g ra p h y d riv en flo w o f o re flu id s (com p.
P elisso n ier, 1965, R ó ż k o w sk i e t al., 1979; C h u rc h &
V au g h n , 1993), b u t e v id en c e in th is re s p e c t is in co n clu siv e.
A n a lte rn a tiv e to th e lo n g -d ista n c e la teral flo w o f h y ­
d ro th e rm a l flu id s, is th e sh o rt-d ista n c e flo w fro m so u rc es lo­
cated n e a rb y b e n e a th th e p re s e n t o c c u rre n c e s o f stratab o u n d d ep o sits. W o d z ic k i (1 9 8 7 ) su g g este d a re a so n ab le
h y p o th e sis th a t th e o res u n d er c o n sid e ra tio n re su lte d from
ep iso d ic e x p u lsio n o f o re flu id s fro m C a rb o n ife ro u s strata
d u rin g E a rly C im m e ria n o ro g e n y . T h e C o a l M e a su re s are
o c c a sio n a lly c u t b y o re v ein s, b u t th e s e v e in s m a y also be
in te rp re te d as c h a n n e lw a y s o f o re flu id s d e riv e d fro m preC arb o n ife ro u s ro ck s (e.g. K o sm a n n , 1883; R ru sc h , 1929).
A s is th e ca se w ith m a n y o th e r M V T d ep o sits, the
274
M. SASS-GUSTKIEW ICZ & S. DŻUŁYŃSKI
strata-b o u n d ores u n d e r c o n sid e ra tio n d o n o t rev eal a n y d i­
rect relatio n sh ip to ig n e o u s ro c k s. M an y a u th o rs, h o w ev er,
su g g est a m ag m atic o rig in o f th ese o res (e.g. K ru sch , 1929;
H arań czy k , 1963, 1984; P a ły s , 1967; G a lk ie w ic z , 1971; K u ­
charski, 1996). T here is, in d e e d , a strik in g sp atial c o e x is­
ten ce b e tw e e n th e lo c a liz a tio n o f stra ta -b o u n d ores in T riassic c a rb o n ates an d th e a p p e a ra n c e o f ig n eo u s ro c k s in th e
u n d erly in g P aleo zo ic stra ta (B e lk a & S iew n ia k -M a d e j,
1996). It sh o u ld also be b o m in m in d th a t th e K L lin e am e n t
(K L fractu re zone) w as a s s o c ia te d w ith ig n eo u s in tru sio n s
w h ich m a te ria liz e d in th e fo rm a tio n o f a larg e b ath o lith
(R ulski, 1973, K u c h arsk i, 1996). W e d o n o t k n o w h o w lo n g
it takes fo r a large, d e e p -s e a te d b a th o lite to lo o se its last
m an ifestatio n s o f the th e rm a l a c tiv ity . P erh ap s, th e tim e in ­
terval b e tw e e n the last m a n ife sta tio n s o f ig n eo u s a c tiv ity in
the P aleo zo ic and th e e m p la c e m e n t o f Z n -P b o res in th e T riassic (c.a. 4 0 M y ) w as n o t lo n g en o u g h to p re clu d e a g en etic
relatio n sh ip b etw een th e s e tw o ev en ts.
P rzen io sło (19 7 4 ) is re a d y to a c c e p t su ch a p o ssib ility .
H e suggests th a t the V a risc a n m a g m a tism an d th e e m p la c e ­
m en t o f stra ta-b o u n d o res in th e T ria ssic h a v e a c o m m o n
source. A s an arg u m en t in fa v o r o f th is c o n c lu sio n h e calls
attention to th e o p in io n o f F re n c h au th o rs (S arc ia et al.,
1958) th a t in th e C en tral M a ssif, th e o re -fo rm in g h y d ro th e r­
m al activ ity re la te d to late P a le o z o ic in tru sio n s o f g ra n itic
m ag m a m ay be traced in T ria s sic a n d L o w e r Ju ra ssic strata.
A s k now n, th e h y d ro th e rm a l o re fo rm in g so lu tio n s m a y re ­
m ain for a long tim e in th e so c a lle d “ fossil w a te r re s e r­
v o irs” .
A s a co lo rary o f m a g m a tic o rig in o f o re flu id s o r as an
altern ativ e ex p lan a tio n is th e g e n e ra tio n o f h e a t a n d th e su b ­
seq u en t reg en eratio n o f L a te P ale o z o ic o res as a c o n se ­
quen ce o f g eo lo g ic e v o lu tio n o f th e E a rth ’s crust. T h e M V T
deposits te n d to o ccu r a t sp e c ific stag es o f su ch ev o lu tio n .
T h ese stages c o rresp o n d to th e g lo b a l b re a k -u p o f p la tes an d
the b e g in n in g o f new g e o sy n c lin e s in th e E a rth ’s h isto ry .
Such tu rn in g points in th e e v o lu tio n o f th e E a rth ’s cru st are
in v ariab ly a sso ciate d w ith sig n ific a n t h e a t flo w . T h e e m ­
p la c e m e n t o f th e U p p e r S ile sian stra ta -b o u n d su lfid e ores
o ccu red in th e T riassic w h ic h re fle c ts th e P a n g e a n b re a k -u p
fo llo w in g th e E arly P e rm ia n asse m b ly o f P a n g e a (e.g.
T ra m p y , 1982; V eev ers, 1989). It is th u s te m p tin g to in te r­
p re t th e o rig in o f th e U p p e r S ilesia n stra ta-b o u n d su lfid e
ores in term s o f g lo b a l p la te re o rg a n iz a tio n (P rz e n io sło ,
1974; P ały s, 1967; D ż u ły ń sk i & S a ss-G u stk ie w ic z, 1985).
S u m m in g up, w ith th e p re s e n t state o f k n o w le d g e it is
d ifficu lt to p ro v id e re lia b le e v id e n c e c o n c e rn in g th e so u rce
o f base m etals. T he p o ssib ility o f a lo n g d ista n c e flu id flo w
from u n k n o w n or h y p o th e tic a l so u rce b ed s c a n n o t b e d is­
carded. H o w ev er, the so u rc e o f m e ta l-b e a rin g flu id s m ay
w ell be sea rc h e d in d e e p e r p a rts o f th e cru st, b elo w th e p re ­
sent T riassic d eposits. In a sp e c u la tiv e re c o n stru c tio n o f the
pro cesses w h ic h re s u lte d in th e em p la c e m e n t o f stratabo u n d su lfid e ores w e a rriv e at th e fo llo w in g te n ta tiv e fo r­
m atio n m odel. T h e p rim a ry m e ta l-b e a rin g flu id s w e re o rig i­
nally re la te d to the L ate P a le o z o ic ig n eo u s activ ity w h ich
gave rise to the p o ly m e ta llic ores. T h ese o re flu id s o r ores
becam e re m o b iliz e d b y h e a t flo w d u rin g th e late T riassic
p la te-tecto n ic re o rg a n iz a tio n a n d re d e p o site d as stratabo u n d d ep o sits in the M u s c h e lk a lk h o st strata. D u rin g th e
L o w e r T e rtia ry , th e flo w o f h y d ro th e rm a l so lu tio n s w as re ­
a c tiv a te d an d re s u lte d in d e p o sitio n o f e c o n o m ic a lly u n im ­
p o rtan t, fa u lt-h o ste d su lp h id e o re v ein s. T h is tim e, in deed,
th e fa u ltin g w a s re la te d to fin al th ru stin g o f th e C a rp ath ian
n ap p es. T h e h e a t g e n e ra te d b y fric tio n o f ro c k m a sse s along
th e fa u lt su rfa ce s rise d th e te m p e ra tu re o f g ro u n d w a ters an d
e n a b le d th e re m o b iliz a tio n o f e a rlie r su lfid e d ep o sits.
REFERENCES
Alexandrowicz, S., 1971. Relationship between Triassic formation
and the Paleozoic basement betw een Klucze and Bydlin.
Rudy i Met. Nieżel., (In Polish), 16: 468-470.
Althans, R., 1891. Die Erzformation des M uschelkalk in
Oberschlesien. Preuss. Ceol. Landesanst. Jahrb., 12: 37-98.
Assmann, P., 1948. Zur Frage der Entstehung der oberschlesischen-polnisch Blei-Zink Erz Lagerstatten. Deutsch. Geol.
Ges. Z , 98: 30-69.
Balwierz, J. & Dżułyński, S., 1976. Experiments on rock deforma­
tions produced by underground karst processes. Ann. Soc.
Geol. Polon., 46: 419—434.
Banaś, M., Clauer, N. & Środoń, J., 1996. Reconstruction o f the
thermal history o f the Upper Silesian Coal Basin on the basis
o f the illite/smectite dating from the pyroclastic layers. Pro­
ceedings o f Scientific Session on “Mineral and rock dating",
University o f Maria Skiodowska-Curie, Lublin, Poland, (In
Polish), p. 6-12.
Bednarek, J., Górecka, E. & Zapaśnik, T., 1983. Tectonically
controlled developm ent o f ore mineralization in Jurassic se­
quence o f the Silesian-Cracovian Monocline. (In Polish, Eng­
lish summary). Ann. Soc. Geol. Polon., 53: 43-62.
Belka, Z. & Siewniak-Madej, A., 1996. Thermal maturation o f the
Lower Paleozoic strata in the southwestern margin o f the
M ałopolska Massif, southern Poland: no evidence for Caledo­
nian regional metamorphism. Geol. Rundsch., 85: 775-781.
Blajda, R., 1993. The geometric-mathematical model o f the zinc
and lead ore deposits from the Olkusz region. Geol. Quart.,
37: 175-188.
Bogacz, W. & Krokowski, J., 1981. Rotation o f the basement of
the Upper Silesian Coal Basin. Ann. Soc. Geol. Polon., 51:
361-382.
Bogacz, K., Dżułyński, S. & Harańczyk, C., 1970. Ore-filled
hydrothermal karst features in the Triassic o f the Upper Sile­
sian region. Acta Geol. Polon., 20: 247-267.
Bogacz, K., Dżułyński, S., Harańczyk, C. & Sobczyński, P., 1972.
Contact relations o f the ore-bearing dolomite in the Triassic
o f the Cracow -Silesian region. Ann. Soc. Geol. Polon., 42:
347-372.
Bogacz, K , Dżułyński, S., Harańczyk, C. & Sobczyński, P.,
1973a. Sphalerite ores reflecting the pattern o f primary strati­
fication in the Cracow -Silesian region. Ann. Soc. Geol.
Polon. 43: 285-300.
Bogacz, K , Dżułyński, S, & Harańczyk, C. & Sobczyński, P.,
1973b: Caves filled with clastic dolomite and galena minerali­
zation in disaggregated dolomites. Ann. Soc. Geol. Polon., 43:
59-72.
Bogacz, K., Dżułyński, S. & Harańczyk, C. & Sobczyński, P.,
1975. Origin o f the ore-bearing dolom ite in the Triassic o f the
C racow -Silesian region. Ann. Soc. Geol. Polon., 45: 139—
155.
Borucki, J., 1978. Isotopic composition and absolute age. Prace
Inst. Geol., 83: 229-235.
Bridgeman, P. W., 1952. Studies in Large Plastic Flow and Frac­
tures. McGraw-Hill, N ew York, pp. 362.
ORIGIN OF Zn-Pb ORES IN THE UPPER SILESIA
Bukowy, S., 1994, Outline o f the structure o f Palaeozoic complex
in the northeastern margin o f the U pper Silesian Coal Basin.
(In Polish, English summary). In: Różkowski, A. (Ed.), Prze­
wodnik LXV Zjazdu PTC. U niw ersytet Śląski, Katowice, 14—
30.
Buła, Z. & Jachowicz, M., 1996. The Lower Paleozoic sediments
in the Upper Silesian Block. Geol. Quart., 40: 299-336.
Church, S. E. and Vaughn, R. B., 1993. Lead-isotopic charac­
teristic o f the Silesian-Cracow Zn-Pb ores (southern Poland).
Geol. Quart., 37: 323-324.
Church, S. E., Vaughn, R. B., Gent, C. A. & Hopkins, R. T., 1996.
Lead-isotopic, sulphur-isotopic, and trace-element studies o f
galena from the Silesian-Cracov Zn-Pb ores, polymetallic
veins from the Góry Świętokrzyskie Mts. and the Myszków
porphyry copper deposits, Poland. Geol. Quart., 37: 323-324.
Dublyansky, Y., 1995. Speleogenetic history o f Hungarian hy­
drothermal karst. Environm. Geol., 25: 24—35.
Dunham, (Sir) K. C., 1950. Geology, paragenesis and reserves o f
the ores o f lead and zinc. 18-th Intern. Geol. Congress, Lon­
don, 7: 11-39.
Duwensee, F., 1928. Uber die Erzftirenden Dolomite in Ostlichen
Oberschlesien insbesondere im ostlichen Teile des Sudflugels
der Beuthener Bleizinkmulde. Z. Prakt. Geol., 36:81-84.
Dżułyński, S., 1953. Tectonics o f the southern part o f the Cracow
Upland. Acta Geol. Polon., 3: 325^140.
Dżułyński, S., 1976. H ydrothermal karst and Zn-Pb sulfide ores.
Ann. Soc. Geol. Polon., 46: 217-230.
Dżułyński, S. & Rudnicki, J., 1986. Karst-corrasion features o f
disaggregated limestones controlled by diffusion bands. Ann.
Soc. Geol. Polon., 56: 100-115.
Dżułyński, S. & Sass-Gustkiewicz, M., 1978. Ore breccias in the
Triassic rocks o f the C racow -Silesian region (Poland).
Schriefr. Erdwissensch. Komm. Ósterreich. Akademie Wissensch., W ien-New York, 3: 125-130.
Dżułyński, S. & Sass-Gustkiewicz, M., 1980. Dominant ore-forming processes in the C racow -Silesian and Eastern-Alpine
zinc-lead deposits. Proceedings o f 5th IAGOD Symposium,
Snowbird, USA., 412-429.
Dżułyński, S., & Sass-Gustkiewicz, M., 1985. Hydrothermal karst
phenomena as a factor in the formation o f Mississippi Valleytype deposits. In: Wolf, K.H. (Ed.), Handbook o f StrataBound and Stratiform Ore Deposits, Elsevier, Amsterdam,
13: 391—439.
Dżułyński, S. & Sass-Gustkiewicz, M., 1993. Paleokarstic Zn-Pb
ores produced by ascending hydrothermal solutions in Sile­
sian-C racow district. Geol. Quart., 37: 255-264.
Ekiert, F., 1957. Origin o f Sielesian zinc and Lead deposits.
Przegl. Geol., 7: 322-325.
Ekiert, F., 1971. Geological structure o f the sub-Permian basement
of the north-eastern margin o f the Upper Silesian coal basin.
(In Polish, English summary). Prace Inst. Geol., 6 6 : pp. 77.
Fyfe, W. S., Price, N. J. & Thompson, A. B., 1978. Fluids in the
Earth’s Crust. Development in Geochemistry, 1. Elsevier,
Amsterdam, pp. 383.
Gałkiewicz, T., 1971. A theory o f ortohydrothermal origin o f the
Silesian-Cracovian zinc-lead deposits. Ann. Soc. Geol.
Polon., 41: 565-570.
Gałkiewicz, T., 1983. The regularities o f formation o f S ilesianCracow zinc-lead deposits. (In Polish, English summary).
Prace Geol. PAN, 25: pp. 75.
Gignoux, M. & Avnimelech, M., 1973. Gencse des roches sedimentaries breco°des par “intrusion et eclatement” . Soc. Geol.
Fr. Bull., 5, 7: 27-33.
Górecka, E., 1972. Ore mineralization in Paleozoic rocks o f the
Silesian-Cracow area. Acta Geol. Polon., 22: 275-326.
275
Górecka, E., 1973. Development o f ore mineralization in the
north-eastern part o f the C racow -Silesian area. Bull. Polish
Acad. Sci., Earth Sci., 21: 35-43.
Górecka, E., 1993. Geological setting o f the Silesian-Cracow
Zn-Pb deposits. Geol. Quart., 37: 127-146.
Górecka, E. & Nowakowski, A., 1979. Ore deposits associated
w ith acid intrusives and related rocks in Zawiercie region.
Prace Inst. Geol., 95: 97-107.
Górecka, E., Kozłowski, A. & Kibitlewski, S. 1996. The Sile­
sian-C racow Zn-Pb deposits, Poland. A consideration o f oreforming processes. Prace Inst. Geol., 154: 167-182.
Gruszczyk, H., 1967. The genesis o f the Silesian-C racow leadzinc deposits. Econ. Geol., M onograph 3: 196-177.
Giirich, G., 1903. Zur Genese der oberschlesischen Erzlagerstatten. Z. Prakt. Geol., 11: 202-205.
Harańczyk, C., 1963. Vertical ore-zoning in the zone o f faulting
observed in Klucze near Olkusz (Silesian-Cracovian zinc and
lead deposits). Proceedings o f Symp. Problems o f Postmagmatic Ore Deposition, Prague, 1: 248-253.
Harańczyk, C., 1979. M etallogenic evolution o f the Silesia-C racow region. Prace Inst. Geol., 45: 109-132.
Harańczyk, C., 1984. Relation o f the Silesian-C racovian Zn-Pb
deposits to final stage transformation o f the granitic magma
hearth. Proceedings o f 6-th IAGOD Symp., Stuttgart, 359—
368.
Harańczyk, C., 1993. Sulfur isotope models o f genesis o f the
Silesian-Cracow Zn-Pb deposits. Geol. Quart., 37: 307-322.
Herbich, E., 1981. A tectonic analysis o f the fault netw ork o f the
Upper Silesia Coal Basin. (In Polish, English summary). Ann.
Soc. Geol. Polon., 51: 383—434.
Jachowicz, M., & Moryc, W., 1995. Cambrian platform deposits
in boreholes Rajbrot I and Rajbrot 2 south o f Bochnia (South­
ern Poland). (In Polish, English summary). Przegl. Geol., 38:
935-940.
Jakucs, L., 1977. M orphogenesis o f K arst Regions. Akademiai
Kiado, Budapeszt, pp. 284.
Jaroszewski, W., 1993. M anifestation o f hydro tectonics in Zn-Pb
mineralization at Trzebionka mine (Silesian-C racow zinclead district, Poland). Geol. Quart., 37: 241-254.
Keil, K., 1956. Die Genesis der Blei-Zink Erzlagerstatten von
Oberschlesien (Górny Śląsk, Polen). Beih. Z. Geol., 15: pp.
63.
Kents, P., 1964. Special breccias associated with hydrothermal
developments in the Andes. Econ. Geol., 59: 1551-1563.
Kibitlewski, S., 1993. Tectonic control o f the origin o f Zn-Pb
deposits in the Chrzanów region. Geol. Quart., 37: 229-239.
Kibitlewski, S. & Górecka, E., 1988. Tectonic structures in orebearing dolom ites from the Pomorzany mine, Olkusz region
o f Zn-Pb deposits. Przegl. 'Geol, 36: 408—413.
Kosmann, L., 1883. Uber Erzgange und Erzmineralien in dem
Steinkohlengebirge Oberschlesiens. Z. Berg-Huttenm. Ver.
3 1 :2 8 9 -2 9 1 ,3 0 2 -3 0 4 .
Kotas, A., 1982. Zarys budow y geologicznej Górnośląskiego
Zagłębia Węglowego. (In Polish). In: Różkowski, A., Ślósarz,
J. (Eds.), Przewodnik 54 Zjazdu PTG, W ydawnictwa Geo­
logiczne, W arszawa, 45-71.
Kotas, A., 1985. Structural evolution o f the Upper Silesian Coal
Basin, Poland. Proceedings o f 10-th Congr. Strat. Geol. Carb.
Madrid, 1983, 3: 4 5 9 ^ 6 9 .
Kozłowski, A., 1995. Origin o f Zn-Pb ores in the Olkusz and
Chrzanów districts: A model based on fluid inclusions. Acta
Geol. Polon., 45: 84—141.
Krajewski, R., 1957. Remarks about the origin o f Silesian zinc and
lead deposits. (In Polish). Przegl. Geol., 1: 311-319.
Krusch, P., 1929. Uber kolloidale Vorgange bei Entstehung der
276
M. SASS-GUSTKIEW ICZ & S. DŻULYŃSKI
oberschlesischen Zink-Blei Lagerstatten. Z. Oberschles. Berg
u. HiXtten. Ver., 68.
Krzyczkowska-Everest, A., 1990. Petrographic characteristics o f
the ore-bearing dolom ites o f the górażdża beds, from O lkuszBoleslaw region (South Poland). Prace Min. PAN, 81: pp. 64.
Kucharski, E., 1996. Possible occurence o f an intrusive body in
deep Paleozoic basem ent o f the Olkusz district. Prace Inst.
Geol., 154: 153-165.
Kunsky, J., 1957. Therm om ineral karst caves o f Zbrashow, north­
ern Moravia. Sbornik Zemnepisme Ceskoslov., 62: 306-351.
K waśniewicz, М., 1932. C ontribution a la theorie de la formation
des m inerais de zinc-plom biferes du Haute-Silesie. Przegl.
Górn.-Hutn., 12: 665-669.
Leach, D. L. & Viets, J. G., 1993. A prelim inary comparison o f the
Silesian-C racow M ississippi Valley-type district (southern
Poland) with M ississippi V alley-type districts in North A mer­
ica. Geol. Quart., 37: 325-327.
Leach, D. L., Viets, J. G. & Powell, J. W., 1996a. Textures o f ores
from the Silesian-C racow zinc-lead deposits, Poland: clues to
the ore-form ing environment. Prace Inst. Geol., 154: 37-50.
Leach, D. L., Viets, J. G., Kozłowski, A. & Kibitlewski, S., 1996b.
G eology, geochemistry, and genesis o f the Silesia-Cracow
zinc-lead district, southern Poland. In: Sangster, D. F., (Ed.),
C arbonate-hosted Lead-Zinc Deposits, Spec. Publ. Amer.
Soc. Econ. Geol., 4: 144-170.
Lebedev, L. М ., 1974. Sovrem ennye Rudoobrazujuscie Gidrotermy, (In Russian). N edra, Moscow, pp. 261.
Lewchuk, М. T. & Symons, D. T. A., 1996. Age and duration o f
M ississippi V alley-type ore-mineralizing events. Geology,
2 3 :2 3 3 -2 3 6 .
Lindgren, W„ 1918. Volume changes in metamorphism. J. Geol.,
26: 542-544.
Lowering, T. S. in collaboration with 11 other authors, 1949.
A lteration in the East Tintic district, Utah. Econ. Geol. M ono­
graph 1, pp. 65.
Lowering, W., 1963. Epigenetic, diplogenetic, syngenetic, and
lithogene deposits. Econ. Geol., 58: 315-331.
Maksimovich, G. A., 1969. Fundamentals o f Karstology. Geograf.
Obch. USSR.. 2: pp. 560.
M ichael, R., 1904. Die oberschlesischen Erzlagerstatten. Z
Deutch. Geol. Ges., 56: 127-146.
M cClelland, G. D. & W hitebread, D. H., 1965. Geology and ore
deposits o f the m etalline zinc-lead district Pend Oreille,
Count. Washington. US GSProf. Pap. , 489: pp. 109.
M ochnacka, K., & Sass-Gustkiewicz, М., 1981. The metasomatic
zinc deposit from the Pomorzany mine (C racow -Silesian ore
district). Ann. Soc. Geol. Polon., 51: 133-151.
M orawska, A., 1997. The Lubliniec fracture zone: boundary o f the
U pper Silesian and M ałopolska massifes, southern Poland.
Ann. Soc. Geol. Polon., 67: 429-437.
Moryc, W., 1971. The Triassic o f the Foreland o f Central Carpa­
thians. Ann. Soc. Geol. Polon., 41: 419-483.
M uffler, L. J., White, D. E. & Truesdell, A. H., 1971. Hydrother­
mal explosion craters in Yellowstone National Park. Geol.
Soc. Amer. Bull., 80: 723-740.
Oberc, J., 1993. The role o f longitudinal dislocation zones and
strike-slip transversal deep fracture o f Silesia-L ibusza(H am burg-K raków ) in form ation o f main zone o f meridional folds
in Silesia and M oravia areas. Geol. Quart., 37: 1-18.
Ohle, E. L., 1980. Some considerations in determining the origin
o f ore deposits o f the M ississippi V alley-type - Part II. Econ.
Geol., 75: 161-172.
Ohle, E. L., 1996. Significant events in the geological under­
standing o f the south-east Missouri lead district. In: Sangster,
D. F., (Ed.), Carbonate-hosted Lead-Zinc Deposits, Spec.
Publ. Amer. Soc. Econ. Geol., 4: 1-7.
Ozoray, G., 1961. The mineral filling o f the therm al spring caves
o f Budapest. Atti del Symp. Int. di Speleolg., M em oria V, 2:
152-170.
Pałys, J., 1967. Remarks on genesis o f Triassic zinc-lead ore
deposits. (In Polish, English summary). Przegl. Geol., 12:
551-553.
Panek, S. & Szuwarzyński, M., 1975. Fossil sink holes with galena
mineralization in the vicinity o f Crzanów, Cracow -Silesian
region. Ann. Soc. Geol. Polon., 45: 177-189.
Park. Jr., C. F. & Cannon, Jr., R. S., 1943. Geology and ore
deposits o f the M etalline Quadrangle. US GS Prof. Pap., 202:
pp. 81.
Pelissonier, H., 1965. Sur la genese des gites stratiform es de
Plom b-Zinc de Haute-Silesie. Bull. Acad. Sci. Polonaise. Ser.
Geogr. Geol., 13: 127-133.
Petrascheck, W. E., 1918. Das A lter der polnischen Erze. Kaiser.
Kgl. Geol. Reichsanst. Ver., 11: 1-9.
Phillips, W. J., 1972. H ydraulic fracturing and m ineralization. J.
Geol. Soc., London, 128: 337-359.
Piekarski, K , 1965. Influence o f Lower Jurassic w eathering upon
Zn-Pb ores in the Silesian-C racow Triassic (In Polish with
English summary). Przegl. Geol., 2: 54-59.
Posępny, F., 1894. Uber die Entstehung der Blei- und Zink-lagerstatten in ausloslichen Gesteinen. Berg-Hiittenm. Monatsh.,
42: 77-130.
Przeniosło, S., 1974. Zinc and lead in Triassic carbonate rocks in
the vicinity of Zawiercie. (In Polish, English sum mary). Biul.
Inst. Geol., 278: 113-199.
Repetski, J. E., & N arkiewicz, M., 1996. C onodont color and
surface textural alteration in the M uschelkalk (Triassic) o f the
Silesian-C racow Zn-Pb district, Poland. Pr. Inst. Geol., 154:
113-121.
Romer, F., 1870. Geologie von Oberschlesien. Breslau, pp. 587.
Różkowski, A., Rudzińska, T. & Bukowy, S., 1979. Thermal
brines as a potential source o f ore m ineralization o f the Sile­
sia-C racow area. Pr. Inst. Geol., 95: 59-85.
Rudnicki, J., 1979. Role o f convolution in shaping subterranean
karst forms. Kras i Speleol., 2: 92-100.
Rulski, S., 1973. Geology o f the pre-m ezozoic substratum of
Siew ierz-Zaw iercie region. (In Polish). PhD Thesis, Dept, of
Geology, W arsaw University.
Ryka, W., 1978. M etamorphic rocks. (In Polish, English sum­
mary). Prace Inst. Geol., 83: 69-71.
Sachs, A., 1930. Die Erzlagerstatten O berschlesiens. Z. Deutsch.
Geol. Ges., 56: 269-272.
Sarcia, J. A., Carrat, H., Poughon, A. & Sanselme, H., 1958.
Geology o f uranium vein deposits o f France. Proceedings
Sec. United Nation Intern. Conf. Peace, Uses Atomic Energy,
Geneve, 2: 592-611.
Sass-Gustkiewicz, M., 1974. Collapse breccias in the ore-bearing
dolomite o f the O lkusz mine (C racow -Silesian ore district).
Ann. Soc. Geol. Polon., 44: 214—226.
Sass-Gustkiewicz, M., 1975a. Stratified sulfide ores in karst cavi­
ties o f the Olkusz mine (C racow -Silesian region). Ann. Soc.
Geol. Polon., 45: 63-68.
Sass-Gustkiewicz, M„ 1975b. Zinc and lead m ineralization in
collapse breccias o f the Olkusz mine (C racow -Silesian re­
gion, Poland). Ann. Soc. Geol. Polon., 45: 303-326.
Sass-Gustkiewicz, M., 1985. The U pper Silesian Zn-Pb ores in the
light o f solution transfer. (In Polish, English summary).
Zeszyty Naukowe AGH, Geologia, Kraków, 31: pp 101,
Sass-Gustkiewicz, M., 1993. Reconstruction o f hydrothermal karst
system in Zn-Pb sulphide deposits, U pper Silesian region,
Poland. Bull, de la Soc. Geograph, de Liege, 29: 87-92.
211
ORIGIN OF Zn-Pb ORES IN THE U PPER SILESIA
Sass-Gustkiewicz, M., 1996. Internal sediments as a key to under­
standing the hydrothermal karst origin o f the Upper Silesian
Zn-Pb ore deposits. In: Sangster, D. F., (Ed.), Carbonatehosted Lead-Zinc Deposits, Spec. Publ. Amer. Soc. Econ.
Geol., 4: 171-181.
Sass-Gustkiewicz, M., Blajda R. & Nieć M., 1997. Upper Silesian
Zn-Pb deposits models applied to exploration strategy. Notes
et Memoires du Service Geologique Maroc, Rabat, Maroc,
388: 23-25.
Sass-Gustkiewicz, M., Dżułyński, S. & Ridge, J., 1982. The em ­
placement o f zinc-lead sulphide ores in the Upper Silesian
district - a contribution to the understanding o f MVT depos­
its. Econ. Geol., 77: 392—412.
Sass-Gustkiewicz, M. & M ochnacka, K., 1993a. Genesis o f
sphalerite rhythmites from U pper Silesian Zn-Pb ores - dis­
cussion. Spec. Publ. SGA, Springer Verlag, Berlin-Heidelberg-New York, 219-227.
Sass-Gustkiewicz, M. & M ochnacka, K., 1993b. Dissolution o f
carbonates accom panying the formation o f metasomatic spha­
lerites in Upper Silesian deposits. Archiw. Mineral., 49:
281-282.
Sawkins, F., 1969. Chemical brecciation, an unrecognized mecha­
nism for breccia formation? Econ. Geol., 64: 613-617.
Sibson, R. H., 1987. Earthquake rupturing as a mineralizing agent
in hydrothermal systems. Geology, 15: 701-704.
Sibson, R. H., Moore, J. McM. & Rankin, A. H. 1975. Seismic
pumping - a hydrothermal fluid transport mechanism. J.
Geol. Soc., London, 131: 653-659.
Siedlecki, S., 1955. Badania nad stratygrafią, sedym entologią i
paleogeografią triasu górnośląskiego i ich znaczenie dla poz­
nania genezy polimetalicznych kruszców triasowych. (In Po­
lish). Przegl. Geol., 10: 493.
Smolarska, I., 1968. Textural types o f zinc-lead ores in the Trze­
bionka region. Biul. Inst. Geol., 237: 71-84.
Sobczyński, P., Szuwarzyński, M. & Wojnar, E., 1978. Modes of
occurence o f ore mineralization in the Chrzanów trough. (In
Polish, English summary). Prace Inst. Geol., 83: 185-192.
Sobczyński, P. & Szuwarzyński, M., 1974. Dolomites and ore
horizons in the Lower M uschelkalk o f the Trzebionka mine
(C racow -Silesian region). Ann. Soc. Geol. Polon., 44: 5 4 5 556.
Stappenbeck, R., 1928. A usbildung und Ursprung der Oberschlesischen Blei-Zink Erzlagerstatten. Arch. Lagerstattenf., 41:
12- 1 6 .
Symons, D. T. A., Sangster, D. F. & Leach, D. L., 1995. A Tertiary
age from paleom agnetism for the Mississippi Valley-type
zinc-lead mineralization in Upper Silesia, Poland. Econ.
Geol., 90: 782-794.
Symons, D. T. A., Sangster, D. F. & Leach, D. L., 1996. Paleo­
magnetism o f the Mississippi V alley-type Zn-Pb deposits o f
the Silesian Cracow area, Poland. Prace Inst. Geol., 154:
158-162.
Szulc, J., 1993. Early Alpine tectonic and lithofacies succession in
the Silesian Part o f the M uschelkalk basin - a synopsis. In:
Hagdom, H. & Seilacher, A., (Eds), Muschelkalk - Schoentaler Symp. 1991, Goldschenck Verlag, Stuttgart, 19-28.
Szuwarzyński, M., 1983. Characteristic o f an ore body in the
lead-zinc deposits o f the Trzebionka mine, Southern Poland.
(In Polish, English summary). Ann. Soc. Geol. Polon., 53:
255-266.
Szuwarzyński, M., 1993. The lead and zinc ore deposits in the
vicinity o f Chrzanów. Geol. Quart., 37: 209-278.
Szuwarzyński, M., 1996. Ore bodies in the Silesian-Cracow ore
district, Poland. Prace Inst. Geol., 154: 9-24.
Śliwiński, S., 1969. The developm ent o f ore-bearing dolomite in
the Cracow -Silesian are. (In Polish, English summary). Prace
Geol., PAN O/Kraków, 57: pp. 124.
Trumpy, R., 1982. Das Phenomen Trias. Geol. Rundsch., 71:
711-723.
Veevers, J. J., 1989. M iddle/Late Triassic (230 ±5 Ma) singularity
in the startigraphy and magmatic history o f the Pangea heat
anomaly. Geology, 17: 784—787.
W ieser, T., 1957. Petrographic characteristics o f albitophyrites,
porphyries and diabases from M rzygłód near Zawiercie. (In
Polish, English summary). Geol. Quart., 1: 113-125.
Wodzicki, A., 1987. Origin o f the C racovian-Silesian Zn-Pb de­
posits. Ann. Soc. Geol. Polon., 57: 3-36.
W yczółkowski, J., 1971. Effects o f the surface morphology o f the
Paleozoic substratum on the sedim entation o f the Bunter
Sandstone and Lower M uschelkalk. (In Polish, English sum­
mary). Biul. Inst. Geol., 243: 121-163.
W yczółkowski, J., 1974. The stratigraphy o f the Bunter Sandstone
and the Lower M uschelkalk on the north-eastern margin of
the Upper Silesian Coal Basin in the light o f paleostratigraphy
and sedimentation. (In Polish, English summary). Biul. Inst.
Geol., 2 7 8 :6 7 -1 1 4 .
Żaba, J., 1997. Paleozoic tectonic activity in the C racow -Lubliniec fault zone at the boundary o f the Upper Silesia and
Małopolska blocks, southern Poland. Proceedings 13 Intern.
Congress Carboniferous and Permian, Prace Inst. Geol., 157:
209-214.
Streszczenie
K O M E N T A R Z DO G E N E Z Y G Ó R N O ŚL Ą SK IC H
Z Ł Ó Ż R UD Zn-Pb W U T W O R A C H T R IA SO W Y C H
Maria Sass-Gustkiewicz & Stanisław Dżułyński
W związku z ukazaniem się ostatnio szeregu artykułów do­
tyczących genezy złóż rud cynku i ołow iu na Górnym Śląsku, w
których przypisuje się istotne znaczenie danym pozostającym w
sprzeczności z faktami geologicznymi, zabieramy raz jeszcze głos
w sprawie ich genezy. Chociaż po kilkudziesięcioletniej dyskusji
ju ż nikt nie kwestionuje poglądu o epigenetycznym i hydrotermalnym pochodzeniu, nadal jeszcze pozostały zagadnienia, co do któ­
rych poglądy sąpodzielone. N ależą do nich następujące kwestie: wiek złóż; - stosunek m d do fonu krasowych i tektoniki; - drogi
migracji metalonośnych roztworów oraz m echanizmy ich prze­
m ieszczania się i depozycji; - pochodzenie roztworów hydrotermalnych i źródło zawartych w nich metali. Pomimo, że przyto­
czona dyskusja koncentruje się na poziom o rozprzestrzenionych
(strata-bound) złożach rad w ystępujących w utworach triasowych,
wypływające z niej wnioski dotyczą rów nież złóż rud cynku i oło­
wiu w utworach paleozoicznych, które są z nimi związane gene­
tycznie.
Zmineralizowana część w ęglanow ych skał otaczających zło­
ża zawiera niezliczone pustki o zróżnicowanej wielkości w skazu­
jące, że procesy rozpuszczania krasowego rozwijały się na każ­
dym etapie rozwoju tych złóż, począw szy od etapu metasomatycznego (proto krasowego) do etapu krasu dojrzałego. W każdym z
nich rozpuszczanie krasowe zachodziło równocześnie bądź prawie
równocześnie z w ytrącaniem się rud, na co jednoznacznie w skazu­
j ą zmineralizowane brekcje zawałowe i zmineralizowane osady
wewnętrzne. Leach i inni (1996), zw racając uwagę na fakt w ystę­
powania płonnych brekcji zaw ałow ych oraz powołując się na
przejawy zastępowania siarczkami ich spoiwa sugerują, że wiele
ze zmineralizowanych brekcji zaw ałow ych powstało wskutek se­
lektywnego zastępowania spoiwa starszych płonnych “przed-rud-
278
M. SASS-GUSTKIEW ICZ & S. DŻUŁYŃSKI
nych brekcji” . To z pozoru logiczne rozumowanie nie znajduje po­
parcia w znanych faktach geologicznych dotyczących rozwoju
zjawisk krasowych w tym obszarze.
Powszechnie akceptowany pogląd, że obserwowana w ska­
łach otaczających złoża tektonika odgrywała w ażną rolę w tw orze­
niu się i rozmieszczeniu górnośląskich złóż rud, rozumiany je st:
często w diametralnie różny sposób. Zdaniem autorów fakty geo­
logiczne dowodzą, że tylko wczesnokim eryjskie uskoki, pokryw a­
jące się z uskokami waryscyjskim i m ogą być przed- lub syndepozycyjne z rudami. W iększość uskoków obserwowanych w
złożach, będących rezultatem wczesnotrzeciorzędowej lub neogeńskiej tektoniki, jest jednoznacznie pozłożowa, ponieważ prze­
cina i przem ieszcza ciała złożowe. Tektonika ta natomiast spowo­
dowała lokalną regenerację i rem obilizację wcześniej zdeponowa­
nych siarczków, które w znikom ych ilościach obserwowane są w
szczelinach jurajskich wapieni.
Opinie o wieku złóż górnośląskich podzielone są pomiędzy
dwie hipotezy: o mineralizacji przedgómojurajskiej bądź trzecio­
rzędowej związanej z tektoniką alpejską. Ta ostatnia hipoteza zna­
lazła rzekome poparcie w badaniach paleomagnetycznych, któ­
rych wartość może być jednakże kwestionowana ze względu na
brak realistycznej lokalizacji badanych prób oraz sformułowane
poniżej zastrzeżenia natury geologicznej. I tak nie daje ona odpo­
wiedzi na następujące pytania: 1 - Jak w yjaśnić transgresywne
ułożenie morskich osadów góm ojurajskich na zerodowanej i skrasowiałej powierzchni dolom itów kruszconośnych zawierających
w znacznym stopniu utlenione rudy? 2 - Dlaczego ascenzyjne
roztwory mineralizujące nie pozostawiły żadnych śladów minera­
lizacji w przepuszczalnych utw orach batonu i keloweju? 3 Dlaczego kruszce w ytrącały się tylko w wapieniu muszlowym a
nie w dobrze uławiconych węglanow ych osadach jurajskich lub
kredowych? 4 - Dlaczego w wapieniach jurajskich czy kredowych
nie ma dolomitów kruszconośnych? Przedjurajski wiek okruszcow ania wyjaśnia natom iast równoległe do uławicenia rozmiesz­
czenie ciał rudnych. Roztwory dolom ityzujące poprzedzające depozycję siarczkowych rud, w ykorzystując zachow aną wciąż pier­
w otną porowatość osadów, m ogły z łatw ością przemieszczać się
równolegle do uwarstwienia, zwłaszcza, że w tym czasie osady
triasowe nie były jeszcze zaburzone dolnotrzeciorzędowymi i neogeńskimi uskokami.
Rozmieszczenie złóż w utworach triasowych na tle późnowaryscyjskiej tektoniki w yraźnie sugeruje, że ascenzyjne roztwo­
ry hydrotermalne deponujące złoża siarczków cynku i ołowiu,
przem ieszczały się przez zaburzone tektonicznie dolnokarbońskie
i dewońskie skały węglanowe, najprawdopodobniej w obrębie
strefy spękań K raków -Lubliniec (KLFZ) oraz stref uskokowych
Tarnowskich Gór (TGFZ) i uskoku Górnośląskiego (USF) przed­
stawionych na Fig. 1. W skazują na to zarówno obecność żyłowych
skupień rud o takiej samej mineralogii w utw orach paleozoicznych
jak i fakt występowania największych nagrom adzeń rud w utw o­
rach triasowych głównie w miejscach gdzie skały podścielające
były silnie spękane. Zerodowane paleozoiczne skały tworzyły w
przed triasow ej topografii, charakterystyczne dla złóż MVT pasmo
w ysokich wzgórz. Pogrzebane w górnym triasie wzgórza były
szczególnie dogodnym miejscem, w którym ascenzyjne roztwory
mogły przekraczać niezgodny kontakt skał i rozprzestrzeniać się
poziomo w uławiconych utworach triasowych.
Pochodzenie roztworów mineralizujących jest przedmiotem
domysłów. Ponieważ powstanie tak rozległych złóż wym aga in­
tensywnego i ogromnego objętościowo przepływu roztworów
mineralizujących słuszne jest rozważenie idei o głębokich “po­
grzebanych rezerwuarach” , których gwałtowny drenaż następuje
w warunkach uaktywniania się spękań tektonicznych. Wobec
przestrzennego związku między skałami magmowymi w paleozoicznym podłożu a okruszcowaniem skał triasowych, istniejącego,
na wschodnim obrzeżeniu obszaru występow ania złóż rud Zn-Pb
można przypuszczać również, że okruszcowanie tych utworów
jest przejawem schyłkowej aktyw ności stygnącej i zapewne w
znacznej mierze zastygłej ju ż w aryscyjskiej masy magmowej.
Jako mechanizm przem ieszczania roztworów mineralizu­
jących zwolennicy trzeciorzędowego w ieku złóż proponują nasu­
wanie się karpackich płaszczowin - “ long-distance lateral fluid
flow”. Z przedjurajskim wiekiem złóż rud natom iast spójne po­
zostają trzy mechanizmy przepływu: - “topography driven flow” z
lądu położonego na południe; - “short distance flow” z zalegają­
cych w pobliżu oraz podścielających złoża triasowe utworów karbońskich; - przepływ pionowy z hipotetycznego źródła magmo­
wego.
Należy również pamiętać, że złoża M V T powstawały w ok­
reślonym globalnym stadium rozw oju skorupy ziemskiej. Powsta­
nie górnośląskich złóż, zdaniem autorów, przypadło na okres roz­
padu Pangei, ogólnej tensji i tworzenia się głębokich rozłamów. Z
takimi zjawiskami wiąże się w zmożony dopływ ciepła, uaktyw­
nienie przepływu roztworów hydrotermalnych jak również
możliwa jest remobilizacja w cześniejszych generacji minerałów
kruszcowych.