The influence of resin content on the mechanical and soft magnetic

Transkrypt

The influence of resin content on the mechanical and soft magnetic
KATARZYNA BŁOCH, MARCIN NABIAŁEK, MICHAŁ SZOTA
The influence of resin content on the mechanical
and soft magnetic properties of composite
prepared on the basis of the bulk amorphous
materials
INTRODUCTION
Currently countless amounts of electrical and electronics equipment is produced annually, inside of which the latest generation
transformer systems are located. In order to operate in portable
devices, such as laptops or mobile phones is necessary to use
components that during his work does not use large amounts of
electricity. Therefore, the engineers working in the modern
laboratories are looking for cheap, readily formable and energyefficient transformers. Such a product may be obtained by
combining particles of amorphous material having good soft
magnetic properties with various types of non-metallic tackifiers
[1, 2]. Note, however, that too much of a non-magnetic tackifiers
can affect the parameters deterioration of soft magnetic materials
[3÷5].
The paper presents results of studies conducted for composites
made of amorphous particles combined epoxy resin in an amount
by weight of 2, 3 and 4%.
diffractograms contain only broad and separated into two maximum in
a range of angle 2 from about 30 to 50. The first maximum is
associated with a X-ray diffraction on the Epidian 100 resin. The
second maximum is connected with the X-ray diffraction of metallic
particles of amorphous alloy. This means that the investigated
composite is a fully amorphous material showing the presence of two
amorphous phases.
EXPERIMENTAL PROCEDURE
The material for study was prepared from plates of the
Fe61Co10Y8Mo1B20 bulk amorphous alloy. The plates was crushed
in a mortar and combined of the epoxy resin (Fig. 1a). The plates
were crushed, and then fractionated using a sieve and platform
shaker. The fraction used in the study is 100÷200 microns (Fig. 1b).
The obtained particles are combined with the Epidian 100 resin in
a hydraulic press at a pressure of 5 MPa for 30 s (Fig. 2). Then, the
resulting composites were subjected to curing at 423 K for one
hour. Thus prepared samples had the shape of rollers with
a diameter of 5 mm and a height of about 3 mm.
Structural measurements, for investigated materials, were
performed using a BRUKER D8 ADVANCE X-ray diffractometer, that was equipped with copper radiation source.
Measurements were carried out in the 2 angle range from 30 to
120 with measuring step of 0.5 and exposure time of 5 s. The
structure of the samples was also examined by the use of a Zeiss
Supra 25 microscope company Detector SE. The chemical
composition of the studied material was determined using EDS
microanalyzer. The magnetic measurements: the initial
magnetization curves and the hysteresis loops were performed by
the Lake Shore vibrating sample magnetometer with a maximum
applied magnetic field of 2 T. The average microhardness tested
samples was determined on the basis of five measurements
performed on the device FutureTech 740.
Fig. 1 SEM image of the bulk amorphous alloy in the form of plate (a)
and after crushing to the fraction 100÷200 microns (b)
Rys. 1. Zdjęcie SEM płytki masywnego stopu amorficznego (a) oraz
zdjęcie rozkruszonej płytki do frakcji 100÷200 μm (b)
RESEARCH RESULTS
The X-ray diffraction patterns shown in Figure 3 have a characteristic
shape as for materials having amorphous structure [6÷8]. The X-ray
Dr Katarzyna Błoch, dr hab. inż. Marcin Nabiałek, prof. PCz., dr hab. inż.
Michał Szota prof. PCz. – Wydział Inżynierii Procesowej, Materiałowej i Fizyki
Stosowanej, Politechnika Częstochowska
Fig. 2. Diagram showing the production process of the composite
Rys. 2. Schemat przedstawiający proces wytwarzania kompozytu
82 __________________________ I N Ż Y N I E R I A M A T E R I A Ł O W A ___________________ ROK XXXV
Fig. 4. The surface image of the bulk amorphous material obtained by
SEM (a) and the corresponding EDS pattern (b)
Rys. 4. Zdjęcie powierzchni masywnego materiału amorficznego
wykonane za pomocą SEM (a) oraz odpowiadający mu dyfraktogram
elektronowy uzyskany techniką EDS (b)
Fig. 3. X-ray diffraction patterns obtained for the investigated
materials
Rys. 3. Dyfraktogramy rentgenowskie otrzymane dla badanych materiałów
Microstructure and chemical composition of the bulk
amorphous plates before breaking were analyzed using scanning
electron microscopy. The SEM image of the plate cross-section
microstructure has been shown in Figure 4. The presented crosssection of base alloy has vein type of structure what testify about
high ductility and semi-relaxed structure of alloy. The relaxed
structure of the ferromagnetic amorphous alloys conducive to their
good magnetic properties and, in particular a soft magnetically
[9÷10]. The chemical composition of tested samples in the form of
plates was determined using EDS microanalysis. (Fig. 4b).
The results of chemical analysis for amorphous plates
performed using EDS microanalyser were collected in Table 1.
Table 1. The chemical composition of the amorphous alloy in the state
after solidification before the crushing process, at. %
Tabela 1. Skład chemiczny wytworzonego masywnego stopu
amorficznego w stanie po zestaleniu przed procesem rozkruszania, % at.
Material
Fe61Co10Y8Mo1B20
Fe
74.11
Co
13.34
Y
10.79
Mo
01.76
On the basis of data in Table 1 it can be concluded that the
produced amorphous plates were homogeneous. The results of
microhardness test performed for amorphous plates and
composites are listed in Table 2.
As the results of Table 2, the microhardness of tested
composites is similar and is about 1065 HV. Whereas, the
microhardness of the bulk amorphous plates was higher than in the
composites of more than 120 HV. The smaller value of
microhardness for investigated composites is associated with the
presence of Epidiam 100 resin. Influence of content Epidian 100
resin on the magnetic properties, in particular, the saturation
magnetization and the coercivity is shown in Figures 5 and 6.
The shape of the hysteresis loops (Fig. 5) for all investigated
composites and amorphous plates is typical as for soft magnetic
materials. Coercivity for the amorphous sample in the form of
plates (Fig. 6a) was significantly lower than for the produced
composites (Fig. 6b÷d). Such an increase in coercivity field is
caused by the isolation of the amorphous ferromagnetic alloy
particles, whats results in increase in the distance between them
[11, 12]. In the bulk amorphous alloy, atoms are arranged close to
each other, and here for the good soft magnetic properties, are
responsible exchange interactions. In a sample in the form of
composite, amorphous particles are inter separated by Epidian
resin, and act with each other, by long range dipolar interactions.
Table 2. Microhardness of investigated materials obtained using
a Vickers test
Tabela 2. Mikrotwardość badanych stopów uzyskana sposobem Vickersa
Measurement
Resin content
0%
2%
3%
4%
1
1197
1070
1100
1013
2
1188
1024
1087
1145
3
1209
1077
1009
988
4
1173
1081
987
1091
5
1218
1093
1136
1101
Average
value
Σ/5
1197
1069
1063
1068
Nr 2/2014 ____________________ I N Ż Y N I E R I A M A T E R I A Ł O W A __________________________ 83
a)
c)
b)
d)
Fig. 5. The static hysteresis loops measured for the studied samples: a) in the form of a plate having a thickness of 0.5 mm, bonded using:
b) 2 wt %, c) 3 wt % and d) 4 wt % of epoxy resin, respectively
Rys. 5. Statyczne pętle histerezy zmierzone dla badanych próbek: a) dla litego masywnego materiału amorficznego w formie płytki o grubości 0,5 mm,
b) dla kompozytu z zawartością 2% epidianu, c) dla kompozytu z zawartością 3% epidianu, d) dla kompozytu z zawartością 4% epidianu
Fig. 6. The centres of the M-H plot, showing the coercivity field for studied samples: a) in the form of a plate having a thickness of 0.5 mm,
bonded using b) 2 wt %, c) 3 wt % and d) 4 wt % of epoxy resin, respectively
Rys. 6. Środki układu M–H przedstawiające pola koercji dla badanych próbek: a) dla litego masywnego materiału amorficznego w formie płytki
o grubości 0,5 mm, b) dla kompozytu z zawartością 2% epidianu, c) dla kompozytu z zawartością 3% epidianu, d) dla kompozytu z zawartością 4%
epidianu
84 __________________________ I N Ż Y N I E R I A M A T E R I A Ł O W A ___________________ ROK XXXV
Figure 7 shows the initial magnetization curves for the all
investigated materials, which indicate that the higher the amount
of additive Epidian 100 resin leads to a reduction of the saturation
magnetization of the composites. From those data it can be
concluded that reduction of the share of the magnetic particles in
the composite volume causes decrease of the saturation
magnetization, which is related directly with the changes of
magnetic interaction mechanism occurring in these materials.
The data obtained from the analysis of the hysteresis loops are
collected in Table 3.
SUMMARY
The results presented in this work indicate, that it is possible to
generate electrotechnical composite material having a rather high
microhardness, which are built in more than 95 wt % of
amorphous ferromagnetic metal powder, and the remaining part is
Epidian 100 resin. The advantage of this type of composite materials is the ability to forming them, even in complex shapes, which
makes them particularly attractive for application. Examined
composites were fully amorphous and homogeneous. The homogeneity of the material from which ferromagnetic particles are
prepared for composites is an important parameter, which ensures
the same properties throughout the entire volume of the composite.
Combination of amorphous particles of fraction 100÷200 microns,
with the polymeric binder, resulted in a microhardness reduction
in relative to the bulk amorphous plate.
The decrease for this parameter was quite substantial and
amounted more than 120 HV for each polymer. The value of
saturation magnetization for all tested composites was
significantly lower than for the bulk amorphous alloy. Effect of
Epidian resin on the coercive field value was large and caused by
the isolation of magnetic particles with an amorphous structure by
polimer matrix. Compared to bulk amorphous sample, coercivity
field increased over twentyfold. It was observed, that increasing of
the coercivity field was related to the resin content in the
composite. With increasing wt content of the resin, in the
composite, coercivity field was growing. A similar increase of
coercivity field with higher weight contents of non-magnetic
binder was observed for the composites made of Fe and SrFe12O19
powders. Therefore, the content of the resin in composite is crucial
and should be taken into account during designing of composites,
for electrical equipment [3÷5].
In conclusion, it is possible to produce a composite material
based on of amorphous particles having good functional
parameters [13]. Continuous technological boom gives great
Fig. 7. Initial magnetization curves for the composites with different
content of Epidian resin
Rys. 7. Krzywe pierwotnej magnetyzacji dla kompozytów o różnej
zawartości żywicy epidian
Table 3. The data obtained from the analysis of the hysteresis loops:
Hc – coercive field, μ0Ms – saturation magnetization
Tabela 3. Dane uzyskane z analizy statycznych pętli histerezy: Hc – pole
koercji, μ0Ms – magnetyzacja nasycenia
Zawartość
żywicy
Hc, Gs
μ0Ms, T
0%
2%
3%
4%
0.5
12.9
13.7
14.2
1.17
1.14
1.16
1.17
possibilities to produce more and more modern functional
materials, whose parameters far exceed functional properties of
currently used materials. In particular, this rule applies to
electrotechnical or electronic materials which are widely used all
over the world. The possibility of obtaining a composites with
good soft magnetic characteristics and good thermal stability gives
a chance for production of modern energy-efficient transformer
cores.
REFERENCES
[1] Mazaleyrat F., Varga L. K.: Ferromagnetic nanocomposites (invited
paper). J. of Magn. & Magn. Mater. 215-216 (2000) 253.
[2] Szewieczek D., Ziębowicz B., Dobrzański L. A.: Badania wstępne
nad uzyskaniem kompozytów typu polimer-proszek szkła metalicznego, Proceedings of the 10th Jubilee Scientific International
Conference “Achievements in the Mechanical and Materials
Engineering” AMME’2001, Gliwice-Kraków-Zakopane, (2001)
555÷558.
[3] Lagorce L. K., Allen M. G.: Magnetic and mechanical properties of
micromachined strontium ferrite/polyimide composites. Journal of
Microelectromechanical Systems, vol.6, no.4, (1997) 307÷312.
[4] Janta T.: Wpływ zjawisk starzeniowych na właściwości magnetyczne
kompozytów proszkowych typu dielektromagnetyk. Kompozyty 4
(2004) 384÷388.
[5] Kaszuwara W.: Zastosowanie modelu geometrycznego do opisu
podwyższenia
remanencji
w
magnetycznie
twardych
nanokompozytach typu RE-M. Kompozyty 3 (2003) 159÷164.
[6] Olszewski J., Zbroszczyk J., Hasiak M., Kaleta J., Nabiałek M.,
Bragiel P., Sobczyk K., Ciurzyńska W., Świerczek J., Łukiewska A.:
Microstructure and magnetic properties of Fe-Co-Nd-Y-B alloys
obtained by suction casting method. J. Rare Earth. 27 4 (2009)
680÷683.
[7] Sobczyk K., Zbroszczyk J., Nabiałek M., Olszewski J., Bragiel P.,
Świerczek J., Ciurzyńska W., Łukiewska, A., Lubas M., Szota M.:
Microstructure, magnetic properties and crystalization behaviour of
bulk amorphous Fe61Co10Zr2.5Hf 2.5Ni2W2B20 alloy. Arch. Metall.
Mater., 53, 3 (2008) 855÷860.
[8] He J., Wang W., Wang A., Guan J.: Annealing temperature effect on
microstructure, magnetic and microwave properties of Fe-based
amorphous alloy powders. J. Magn. Magn. Mater. 324 18 (2012)
2902÷2906.
[9] Hasiak M., Sobczyk K., Zbroszczyk J., Ciurzyńska W., Olszewski J.,
Nabiałek M., Kaleta J., Świerczek J., Łukiewska A.: Some magnetic
properties of bulk amorphous Fe-Co-Zr-Hf-Ti-W-B-(Y) alloys. IEEE
Trans. Magn. 11 (2008) 3879÷3882.
[10] Sobczyk K., Świerczek J., Gondro J., Zbroszczyk J., Ciurzyńska W.,
Olszewski J., Brągiel P., Łukiewska A., Rzącki J., Nabiałek M.:
Microstructure and some magnetic properties of bulk amorphous
(Fe 0.61Co0.10Zr0.025Hf0.025Ti0.02W0.02B0.20)100-xYx (x = 0, 2, 3 or 4) alloys.
J. Magn. Magn. Mater. 324 (2012) 540÷549.
[11] Soiński M.: Materiały magnetyczne w technice, Biblioteka COSiW
SEP, Warszawa (2000).
[12] Nowosielski R., Wysłocki J. J., Wnuk I., Sakiewicz P., Gramatyka P.:
Ferromagnetic properties of polymer nanocomposites containing
Fe78Si9B13powder particles. Journal of Materials Processing
Technology 162-163 (2005) 242÷247.
[13] Nabiałek M., Pietrusiewicz P., Dospiał M., Szota M., Gondro J.,
Gruszka K., Dobrzanska-Danikiewicz A., Walters S., Bukowska A.:
Influence of the cooling speed on the soft magnetic and mechanical
properties of Fe61Co10Y8W1B20 amorphous alloy. Journal of Alloys
and Compounds (2014) http://dx.doi.org/10.1016/j.jallcom.2013.12.236.
Nr 2/2014 ____________________ I N Ż Y N I E R I A M A T E R I A Ł O W A __________________________ 85