The influence of resin content on the mechanical and soft magnetic
Transkrypt
The influence of resin content on the mechanical and soft magnetic
KATARZYNA BŁOCH, MARCIN NABIAŁEK, MICHAŁ SZOTA The influence of resin content on the mechanical and soft magnetic properties of composite prepared on the basis of the bulk amorphous materials INTRODUCTION Currently countless amounts of electrical and electronics equipment is produced annually, inside of which the latest generation transformer systems are located. In order to operate in portable devices, such as laptops or mobile phones is necessary to use components that during his work does not use large amounts of electricity. Therefore, the engineers working in the modern laboratories are looking for cheap, readily formable and energyefficient transformers. Such a product may be obtained by combining particles of amorphous material having good soft magnetic properties with various types of non-metallic tackifiers [1, 2]. Note, however, that too much of a non-magnetic tackifiers can affect the parameters deterioration of soft magnetic materials [3÷5]. The paper presents results of studies conducted for composites made of amorphous particles combined epoxy resin in an amount by weight of 2, 3 and 4%. diffractograms contain only broad and separated into two maximum in a range of angle 2 from about 30 to 50. The first maximum is associated with a X-ray diffraction on the Epidian 100 resin. The second maximum is connected with the X-ray diffraction of metallic particles of amorphous alloy. This means that the investigated composite is a fully amorphous material showing the presence of two amorphous phases. EXPERIMENTAL PROCEDURE The material for study was prepared from plates of the Fe61Co10Y8Mo1B20 bulk amorphous alloy. The plates was crushed in a mortar and combined of the epoxy resin (Fig. 1a). The plates were crushed, and then fractionated using a sieve and platform shaker. The fraction used in the study is 100÷200 microns (Fig. 1b). The obtained particles are combined with the Epidian 100 resin in a hydraulic press at a pressure of 5 MPa for 30 s (Fig. 2). Then, the resulting composites were subjected to curing at 423 K for one hour. Thus prepared samples had the shape of rollers with a diameter of 5 mm and a height of about 3 mm. Structural measurements, for investigated materials, were performed using a BRUKER D8 ADVANCE X-ray diffractometer, that was equipped with copper radiation source. Measurements were carried out in the 2 angle range from 30 to 120 with measuring step of 0.5 and exposure time of 5 s. The structure of the samples was also examined by the use of a Zeiss Supra 25 microscope company Detector SE. The chemical composition of the studied material was determined using EDS microanalyzer. The magnetic measurements: the initial magnetization curves and the hysteresis loops were performed by the Lake Shore vibrating sample magnetometer with a maximum applied magnetic field of 2 T. The average microhardness tested samples was determined on the basis of five measurements performed on the device FutureTech 740. Fig. 1 SEM image of the bulk amorphous alloy in the form of plate (a) and after crushing to the fraction 100÷200 microns (b) Rys. 1. Zdjęcie SEM płytki masywnego stopu amorficznego (a) oraz zdjęcie rozkruszonej płytki do frakcji 100÷200 μm (b) RESEARCH RESULTS The X-ray diffraction patterns shown in Figure 3 have a characteristic shape as for materials having amorphous structure [6÷8]. The X-ray Dr Katarzyna Błoch, dr hab. inż. Marcin Nabiałek, prof. PCz., dr hab. inż. Michał Szota prof. PCz. – Wydział Inżynierii Procesowej, Materiałowej i Fizyki Stosowanej, Politechnika Częstochowska Fig. 2. Diagram showing the production process of the composite Rys. 2. Schemat przedstawiający proces wytwarzania kompozytu 82 __________________________ I N Ż Y N I E R I A M A T E R I A Ł O W A ___________________ ROK XXXV Fig. 4. The surface image of the bulk amorphous material obtained by SEM (a) and the corresponding EDS pattern (b) Rys. 4. Zdjęcie powierzchni masywnego materiału amorficznego wykonane za pomocą SEM (a) oraz odpowiadający mu dyfraktogram elektronowy uzyskany techniką EDS (b) Fig. 3. X-ray diffraction patterns obtained for the investigated materials Rys. 3. Dyfraktogramy rentgenowskie otrzymane dla badanych materiałów Microstructure and chemical composition of the bulk amorphous plates before breaking were analyzed using scanning electron microscopy. The SEM image of the plate cross-section microstructure has been shown in Figure 4. The presented crosssection of base alloy has vein type of structure what testify about high ductility and semi-relaxed structure of alloy. The relaxed structure of the ferromagnetic amorphous alloys conducive to their good magnetic properties and, in particular a soft magnetically [9÷10]. The chemical composition of tested samples in the form of plates was determined using EDS microanalysis. (Fig. 4b). The results of chemical analysis for amorphous plates performed using EDS microanalyser were collected in Table 1. Table 1. The chemical composition of the amorphous alloy in the state after solidification before the crushing process, at. % Tabela 1. Skład chemiczny wytworzonego masywnego stopu amorficznego w stanie po zestaleniu przed procesem rozkruszania, % at. Material Fe61Co10Y8Mo1B20 Fe 74.11 Co 13.34 Y 10.79 Mo 01.76 On the basis of data in Table 1 it can be concluded that the produced amorphous plates were homogeneous. The results of microhardness test performed for amorphous plates and composites are listed in Table 2. As the results of Table 2, the microhardness of tested composites is similar and is about 1065 HV. Whereas, the microhardness of the bulk amorphous plates was higher than in the composites of more than 120 HV. The smaller value of microhardness for investigated composites is associated with the presence of Epidiam 100 resin. Influence of content Epidian 100 resin on the magnetic properties, in particular, the saturation magnetization and the coercivity is shown in Figures 5 and 6. The shape of the hysteresis loops (Fig. 5) for all investigated composites and amorphous plates is typical as for soft magnetic materials. Coercivity for the amorphous sample in the form of plates (Fig. 6a) was significantly lower than for the produced composites (Fig. 6b÷d). Such an increase in coercivity field is caused by the isolation of the amorphous ferromagnetic alloy particles, whats results in increase in the distance between them [11, 12]. In the bulk amorphous alloy, atoms are arranged close to each other, and here for the good soft magnetic properties, are responsible exchange interactions. In a sample in the form of composite, amorphous particles are inter separated by Epidian resin, and act with each other, by long range dipolar interactions. Table 2. Microhardness of investigated materials obtained using a Vickers test Tabela 2. Mikrotwardość badanych stopów uzyskana sposobem Vickersa Measurement Resin content 0% 2% 3% 4% 1 1197 1070 1100 1013 2 1188 1024 1087 1145 3 1209 1077 1009 988 4 1173 1081 987 1091 5 1218 1093 1136 1101 Average value Σ/5 1197 1069 1063 1068 Nr 2/2014 ____________________ I N Ż Y N I E R I A M A T E R I A Ł O W A __________________________ 83 a) c) b) d) Fig. 5. The static hysteresis loops measured for the studied samples: a) in the form of a plate having a thickness of 0.5 mm, bonded using: b) 2 wt %, c) 3 wt % and d) 4 wt % of epoxy resin, respectively Rys. 5. Statyczne pętle histerezy zmierzone dla badanych próbek: a) dla litego masywnego materiału amorficznego w formie płytki o grubości 0,5 mm, b) dla kompozytu z zawartością 2% epidianu, c) dla kompozytu z zawartością 3% epidianu, d) dla kompozytu z zawartością 4% epidianu Fig. 6. The centres of the M-H plot, showing the coercivity field for studied samples: a) in the form of a plate having a thickness of 0.5 mm, bonded using b) 2 wt %, c) 3 wt % and d) 4 wt % of epoxy resin, respectively Rys. 6. Środki układu M–H przedstawiające pola koercji dla badanych próbek: a) dla litego masywnego materiału amorficznego w formie płytki o grubości 0,5 mm, b) dla kompozytu z zawartością 2% epidianu, c) dla kompozytu z zawartością 3% epidianu, d) dla kompozytu z zawartością 4% epidianu 84 __________________________ I N Ż Y N I E R I A M A T E R I A Ł O W A ___________________ ROK XXXV Figure 7 shows the initial magnetization curves for the all investigated materials, which indicate that the higher the amount of additive Epidian 100 resin leads to a reduction of the saturation magnetization of the composites. From those data it can be concluded that reduction of the share of the magnetic particles in the composite volume causes decrease of the saturation magnetization, which is related directly with the changes of magnetic interaction mechanism occurring in these materials. The data obtained from the analysis of the hysteresis loops are collected in Table 3. SUMMARY The results presented in this work indicate, that it is possible to generate electrotechnical composite material having a rather high microhardness, which are built in more than 95 wt % of amorphous ferromagnetic metal powder, and the remaining part is Epidian 100 resin. The advantage of this type of composite materials is the ability to forming them, even in complex shapes, which makes them particularly attractive for application. Examined composites were fully amorphous and homogeneous. The homogeneity of the material from which ferromagnetic particles are prepared for composites is an important parameter, which ensures the same properties throughout the entire volume of the composite. Combination of amorphous particles of fraction 100÷200 microns, with the polymeric binder, resulted in a microhardness reduction in relative to the bulk amorphous plate. The decrease for this parameter was quite substantial and amounted more than 120 HV for each polymer. The value of saturation magnetization for all tested composites was significantly lower than for the bulk amorphous alloy. Effect of Epidian resin on the coercive field value was large and caused by the isolation of magnetic particles with an amorphous structure by polimer matrix. Compared to bulk amorphous sample, coercivity field increased over twentyfold. It was observed, that increasing of the coercivity field was related to the resin content in the composite. With increasing wt content of the resin, in the composite, coercivity field was growing. A similar increase of coercivity field with higher weight contents of non-magnetic binder was observed for the composites made of Fe and SrFe12O19 powders. Therefore, the content of the resin in composite is crucial and should be taken into account during designing of composites, for electrical equipment [3÷5]. In conclusion, it is possible to produce a composite material based on of amorphous particles having good functional parameters [13]. Continuous technological boom gives great Fig. 7. Initial magnetization curves for the composites with different content of Epidian resin Rys. 7. Krzywe pierwotnej magnetyzacji dla kompozytów o różnej zawartości żywicy epidian Table 3. The data obtained from the analysis of the hysteresis loops: Hc – coercive field, μ0Ms – saturation magnetization Tabela 3. Dane uzyskane z analizy statycznych pętli histerezy: Hc – pole koercji, μ0Ms – magnetyzacja nasycenia Zawartość żywicy Hc, Gs μ0Ms, T 0% 2% 3% 4% 0.5 12.9 13.7 14.2 1.17 1.14 1.16 1.17 possibilities to produce more and more modern functional materials, whose parameters far exceed functional properties of currently used materials. In particular, this rule applies to electrotechnical or electronic materials which are widely used all over the world. The possibility of obtaining a composites with good soft magnetic characteristics and good thermal stability gives a chance for production of modern energy-efficient transformer cores. REFERENCES [1] Mazaleyrat F., Varga L. K.: Ferromagnetic nanocomposites (invited paper). J. of Magn. & Magn. Mater. 215-216 (2000) 253. [2] Szewieczek D., Ziębowicz B., Dobrzański L. A.: Badania wstępne nad uzyskaniem kompozytów typu polimer-proszek szkła metalicznego, Proceedings of the 10th Jubilee Scientific International Conference “Achievements in the Mechanical and Materials Engineering” AMME’2001, Gliwice-Kraków-Zakopane, (2001) 555÷558. [3] Lagorce L. K., Allen M. G.: Magnetic and mechanical properties of micromachined strontium ferrite/polyimide composites. Journal of Microelectromechanical Systems, vol.6, no.4, (1997) 307÷312. [4] Janta T.: Wpływ zjawisk starzeniowych na właściwości magnetyczne kompozytów proszkowych typu dielektromagnetyk. Kompozyty 4 (2004) 384÷388. [5] Kaszuwara W.: Zastosowanie modelu geometrycznego do opisu podwyższenia remanencji w magnetycznie twardych nanokompozytach typu RE-M. Kompozyty 3 (2003) 159÷164. [6] Olszewski J., Zbroszczyk J., Hasiak M., Kaleta J., Nabiałek M., Bragiel P., Sobczyk K., Ciurzyńska W., Świerczek J., Łukiewska A.: Microstructure and magnetic properties of Fe-Co-Nd-Y-B alloys obtained by suction casting method. J. Rare Earth. 27 4 (2009) 680÷683. [7] Sobczyk K., Zbroszczyk J., Nabiałek M., Olszewski J., Bragiel P., Świerczek J., Ciurzyńska W., Łukiewska, A., Lubas M., Szota M.: Microstructure, magnetic properties and crystalization behaviour of bulk amorphous Fe61Co10Zr2.5Hf 2.5Ni2W2B20 alloy. Arch. Metall. Mater., 53, 3 (2008) 855÷860. [8] He J., Wang W., Wang A., Guan J.: Annealing temperature effect on microstructure, magnetic and microwave properties of Fe-based amorphous alloy powders. J. Magn. Magn. Mater. 324 18 (2012) 2902÷2906. [9] Hasiak M., Sobczyk K., Zbroszczyk J., Ciurzyńska W., Olszewski J., Nabiałek M., Kaleta J., Świerczek J., Łukiewska A.: Some magnetic properties of bulk amorphous Fe-Co-Zr-Hf-Ti-W-B-(Y) alloys. IEEE Trans. Magn. 11 (2008) 3879÷3882. [10] Sobczyk K., Świerczek J., Gondro J., Zbroszczyk J., Ciurzyńska W., Olszewski J., Brągiel P., Łukiewska A., Rzącki J., Nabiałek M.: Microstructure and some magnetic properties of bulk amorphous (Fe 0.61Co0.10Zr0.025Hf0.025Ti0.02W0.02B0.20)100-xYx (x = 0, 2, 3 or 4) alloys. J. Magn. Magn. Mater. 324 (2012) 540÷549. [11] Soiński M.: Materiały magnetyczne w technice, Biblioteka COSiW SEP, Warszawa (2000). [12] Nowosielski R., Wysłocki J. J., Wnuk I., Sakiewicz P., Gramatyka P.: Ferromagnetic properties of polymer nanocomposites containing Fe78Si9B13powder particles. Journal of Materials Processing Technology 162-163 (2005) 242÷247. [13] Nabiałek M., Pietrusiewicz P., Dospiał M., Szota M., Gondro J., Gruszka K., Dobrzanska-Danikiewicz A., Walters S., Bukowska A.: Influence of the cooling speed on the soft magnetic and mechanical properties of Fe61Co10Y8W1B20 amorphous alloy. Journal of Alloys and Compounds (2014) http://dx.doi.org/10.1016/j.jallcom.2013.12.236. Nr 2/2014 ____________________ I N Ż Y N I E R I A M A T E R I A Ł O W A __________________________ 85