Applied Mathematics - List 4 Prepared by dr in˙z. Anna Strzelewicz
Transkrypt
Applied Mathematics - List 4 Prepared by dr in˙z. Anna Strzelewicz
Applied Mathematics - List 4 Prepared by dr inż. Anna Strzelewicz Silesian University of Technology Faculty of Chemistry Definition 1 (Derivative) The derivative of the function f (x) with respect to the variable x is the function f 0 whose value at x is f (x + ∆x) − f (x) ∆x→0 ∆x f 0 (x) = lim provided the limit exists. Notation There are many ways to denote the derivative of a function y = f (x). The most common notations are these: df dy (read: dydx or the derivative of y with respect to x ) , dx (read: the derivative of f 0 (x), y 0 (read: y prime), dx d f with respect to x ), dx f (x) (read: ddx of f(x)) 1. Find the average rate of change of the function over the given interval or intervals. a) f (x) = x3 + 1 √ b) R(θ) = 4θ + 1 i) c) h(t) = cot t i) d) q(t) = 2 + cos t i) [0, π] i) [2,3] ii) [-1,1] ii) [ π6 , π2 ] ii) [−π, π] [0,2] [ π4 , 3π 4 ] 2. Use the definition to find the function’s derivative at the indicated point: a) f (x) = x3 b) f (x) = x0 = −1 1 x x0 = 1 √ c) f (x) = 3x − 2 x x1 = 1 x2 = 4 d) f (x) = 2x2 + 2x − 5 √ e) f (x) = x x0 = 4 x0 = 2 f) f (x) = |x| x2 = 0 x1 = 1 3. Use the definition to find the function’s derivative: a) f (x) = 4 − x2 d) f (x) = b) f (x) = sin(ax) α−β sin α − sin β = 2 cos α+β 2 sin 2 e) f (x) = c) f (x) = sin x2 f)f (x) = 1 x q 1 2x +1 2 3x−1 4. Differentiate the following functions: x4 4 x3 3 x2 2 a) f (x) = 11x5 − 6x3 + 8 b)f (x) = d) f (x) = (x2 − 1)(x − 3) e) f (x) = (3x − 9)(x2 + 18) g) f (x) = 2x2 +1 x+2 j) f (x) = (1 + x1 )(1 + m) f (x) = h) f (x) = 1 x2 ) cos x−sin x cos x+sin x − + √ 3 c) f (x) = x x2 −x f) f (x) = (x − 1)3 (x + 1)2 1+x4 x2 i) f (x) = √ 3x−2 √ x+1 x x l) f (x) = ( 1+x )( 2−x 3 ) k) f (x) = ( x−x√x ) n) f (x) = 4x5 ex + 3 tan x o) f (x) = tan √ x x 5. Differentiate composite functions: a) f (x) = 4 sin( x2 ) √ d) f (x) = 4 2x2 + 1 g) f (x) = √ √ 1 + sin 2x − 1 − sin 2x √ j) f (x) = arc tan tan2 x + C b) f (x) = sinh x √ e) f (x) = 3 2 + 3x c) f (x) = xe2x lnx h) f (x) = ( x3 + x2 + x)−1 f) f (x) = (x5 − x10 )20 −1 −2 i) f (x) = 7x − x−1 + 3x2 k) f (x) = ln(ln(lnx)) l) f (x) = ln2 arc sin 3 1 2 √ x m) f (x) = sin2 x cos7 x p) f (x) = xx , − 2 5 cos5 x x>0 n) f (x) = cos2 2 q) f (x) = xx , q 1 x o) f (x) = 4x + x>0 6. Find the second derivative: a) f (x) = 7x3 − 6x5 c) f (x) = x2 − b) f (x) = 2x5 − 6x4 + 2x − 1 d) f (x) = 7. Find the indicated derivatives: a) d3 1 3 dx3 ( 3 x + 12 x2 + x + 1) d5 4 dx5 (ax + bx3 + cx2 + dx + e) 4 d4 c) dx 1 − 2x 4 b) 2 x2 x2 +a2 1 x2 √ tan x + x2 + r)f (x) = (sin x)cos x , p tan π4 0<x< π 2