Full Text
Transkrypt
Full Text
Please cite this article as:
Tadeusz Konik, O pewnych definicjach styczności zbiorów, Scientific Research of the Institute of Mathematics and
Computer Science, 2002, Volume 1, Issue 1, pages 69-76.
The website: http://www.amcm.pcz.pl/
!
"
#
"
# $
%
!
"
"# # $ %"&
'(
)
$
E
$
l
E ×E
$
E ,
E"
l {x}, {y}
l x, y
)
&'(
l
x, y ∈ E
% *
l
'
$
&'(
l
E, l
E" +
*
#
#
"
,
&'(
*
$
p∈E
Kl
r≥
Kl p, r
%
#
%
" +
*
A⊂E
#
{x ∈ E
$
$
*
#
Kl p, r ,
.
+
E, l ,
p, r
&-(
l p, x < r}
!
E
#
E, τ l . +
E, l
τl
Kl p, r ,
r,
*
p∈A
#
r>
E, τ l
# τl
$ * Kl p, r ⊂ A.
E, τ l .
p
!
p.
$#
/0
Sl p, r
" u!
u
p
Sl p, r
u
r≥
Sl p, r
E, l ,
Kl q, u
q∈S
u>
&1(
p,r
Sl p, r
u
$
a, b
!
$*
ar −
−−→
br −
−−→
r→
$ *
p
&2(
r→
A, B ∈ E
A, B
E, l ,
r >
$ *
a, b !
A ∩ Sl p, r
B ∩ Sl p, r
a r
b r
"
+#
"
A ∈ E
p
A, B
*
k
3'-4
k k >
B ∈ E
A, B ∈ Tl a, b, k, p ,
p
a, b !
E, l ,
a, b !
rk
.
#
l A ∩ Sl p, r
a r
, B ∩ Sl p, r
−−−→
b r
&5(
r→
* $
Tl a, b, k, p ,
p &
$
a, b !
6
(
#
E, l .
6
+
7
*
$
#
%
$
* "
*
# ,+ -, . ) + /
E,
ρ
E, ρ
/ 0
',)
'
"
#
%
!
"#
$
$
Ip
%
314 8" 9 %
$
+"
$
;<
$
#
)" :
."
%
p ∈ E.
, .
%
354
E, ρ " +#
B ∈ Ip
%
$ * %
ATp B,
p ∈ E,
A ∈ Ip
ρ x, x′
−
−−→
ρ p, x A∋x→p
x′
#
x′
x∈A
∈ B,
xt
&/(
x∈A
% B.
% B {x t
≤t≤ }
t
t
$*
ρ x, x′
+
{ρ x, y
ρ x, B
&/(
Ip ,
y ∈ B}
$ *
A ∈ Ip . .
ATp A
Tp
$
ATp B ∧ BTp C ⇒ ATp C
=
.
Ip %
Tp
'
A, B, C ∈ Ip
314"
&/(
Tp
" )
%
% *
B
$
ATp B ⇒ BTp A
=
-
$ *
Ap ,
*
"
A ∈ Ip
B ∈ Ap
"
*
%
Ap
p ∈ E
%
%
A
>
$
%
ℓ px
−
−−→
ρ p, x A∋x→p
#
% #
Ap
ℓ px
?
$ *
*
$
%
*
3'4
"
>
>"@" >
%
%
B ∈ Ip
%
px
p
x.
Ip . +
%
Tp
$
Ap %
*
p ∈ E.
#
%
A $
304 8"
Ip "
% #
p ∈ E,
*
!
% A ∈ Ip
AT B,
;'
ρ p, x
+
ρ p, y − ρ x, y
ρ p, x ρ p, y
&;(
%
−
−−→
&;(
A×B∋ x,y → p,p
$*
Ip . .
=
T
Ip ,
2
" )
304" T
$ * AT B
% *
+
A, B ∈ Ip ,
AT A
Ip .
%
8"
8" 9 %
Ip
%
ATp B
%$ *
" )
=
+"
BT B,
"
1
!
304 8"
%
T
$
AT B.
8"
% &
%
n!
*
p∈E
$*
" 8
n!
*
$
"
3''4
$#
%
"
#%
8" 9 %
ρ p, x
+
$
$ +"
8"
Hp 6
ρ p, y −ρ x, y
ρ p, x ρ p, y
−−−→
}
&B(
A×A∋ x,y → p,p
A.
$ * =
A, B ∈ Hp ,
ATp B
p∈E
304 8"
%
Tp
$ * % B ∈ Hp .
+
$ *
*
*
Ip ∩ Hp .
*
3'<$ ''4 "
8" 9 %
+"
Ip %
$
$
#
+"
8"
"
*
B⊂E
;-
304($
%
A′
#
/
%
{A ⊂ E p ∈ A′
Hp
=
A ∈ Ip
1
304
A ∈ Ip
%
*
!
* &
=
%
-($ *
A, B ∈ Ip ,
%
Tp
%
!
T
%
%
$ *
p ∈ E,
6
B ∈ Ip
!
8" 9 %
$
A⊂E
A Tp B,
p ∈ A′
ρ x, B
−
−−→
ρ p, x A∋x→p
#
#%
ρ x, B
x ∈ A
E, ρ .
3'<4 "
A′p
"
%
&0(
* $*
B
%$ *
{A ⊂ E p ∈ A′ }. .
*
$
"
ATp B ⇒ BTp A
Tp
Tp
"
B ∈ A∗p
A ∈ Cp
&'<(
Cp A∗p ,
,
!
&'<(
6
Cp
p ∈ A′
{A ⊂ E
%
A
#
p
A∗p
{B ⊂ E
p ∈ B′
}
&''(
$*
λ>
ρ x, y − λρ x, B
≤ }
ρ p, x
B p ∋ x,y → p,p
&'-(
#
{ x, y
B p
+
A
x ∈ E, y ∈ B
&''(
A,
ρ p, y }
ρ x, B < ρ p, x
Cp ,
E, ρ "
3''4
3'<4
*
B ∈ Mp , #
Mp
"
#
Tp .
$=
'
$
A ∈ Cp
Tp
{B ⊂ E
p ∈ B′
# ε>
*
ρ p, x < δ
$*
>
$ *
δ>
x, y ∈ B p,
ρ x, B
< δ,
ρ p, x
,
ρ x, y
< ε}
ρ p, x
&'1(
;1
{ x, y
B p,
x ∈ E, y ∈ B
%
$
Mp , #
ρ p, y }
ρ x, B < ρ p, x
#
% $ *
Mp ,
3-4 >"
*
#
$
&
6 3/4 ! 3B4(
#
Mp .
Hp ⊂ A∗p ⊂ Mp ,
* Ip ⊂ Cp , Ap ⊂ A∗p
3-4$ 3'<4
3''4$
8"
=
'
3''4"
+"
ρ A, B
{ρ x, B
&0(
8" 9 %
x ∈ A}
8" 9 %
Tp
A⊂E
$
B⊂E
+"
*
*
{ρ x, B
r
r} −
−−→
ρ p, x
r→
r
#
x∈A
ρ A ∩ Sρ p, r , B −
−−→
&'2(
r→
Sρ p, r
p
!
r
E, ρ .
ar
br
r
?
p ∈ E
ρ A ∩ Sρ p, r
a r
A
a, b !
$ *
A, B ∈ Tρ a, b, , p . +
ar , br !
E, ρ &
&1(("
ρ
&'5(
$
%
&'2(
, B ∩ Sρ p, r
3'-4" C
br
*
−−−→
&'5(
r→
B
"
C
;2
r≥ ,
r
#
Sρ p, r a r , Sρ p, r
Sρ p, r
br
3'-4$
!
# !
l,
ar
br
r
r≥
&'5(
*
k, #
$
@
#
#
"
a, b,
$
k
"
$
*
!
"
f
$
#% $
$ * f
l
%
l 6 E × E −→
f ρ A, B
?
# $
*
.
6
,∞ ,
≤ l A, B ≤ f dρ A ∪ B
A, B ∈ E .
"
$
E
*
#
A >"@"$ D
'02B"
>"$ ?
#
$>
314
324
354
3/4
3;4
3B4
#
, $ ,
3'4 >
3-4
!
6 3/4 ! 3B4(
!
f,ρ .
&
*
#
#
1
f,ρ
"8 "
A
"
A
"$
--B"
9 %
8"$
+"$ 8
#G G H$
F"
" '0/1$ '<$ '<5!1''"
9
)"$ ,
="$ =
"$ ?
#
> "
"
" '0B<$ 1B$ '-'!'1'"
:
)"$
."$ @
#
"@
#"
" '055$ ';$ 2<5!2'<"
,
="$ ?
I HA
A
M $ )" 9
" '005$ 5-$ '2-!'5'"
,
="$ =
#
$
"D
'00B$ 5<$ ';!--"
,
="$ ?
#
$
"
2''!2'0"
A !
#
" '0;-$ '/$ -'0!
"
F
$
"=
$
#
#
"@
'000$ 55J1!2$
;5
8"$ ?
304
%
$ .
" @
"$
#
'0//$ -5$
8 $ ,
0'!'--"
"$ ?
3'<4
#
$
F"
" '0//$
'5$ '-;!'1'"
3''4
+
3'-4
;/
"$ ?
"K
" L "$
"$ ?
#
" '0;1$ -B$ -;5!-B2"
$
"!
"$
#
'0//$ 'B5!'0<"
$> "
"