pdf prezentacji - dr inż. Sławomir Winiarski
Transkrypt
pdf prezentacji - dr inż. Sławomir Winiarski
Materiały informacyjne pochodzą ze strony www.biofizyka.awf.wroc.pl Mechanical energy fluctuations during walking of healthy and ACL reconstructed subjects Sławomir Winiarski University School of Physical Education, Wroclaw; Biomechanics Dep. Metabolic Cost of Walking (a) Metabolic power (W) running walking (b) Economy (J m-1) running walking dr inż S.Winiarski slow walking is very economical, up to about 2 m/s minimum energy usage at intermediate walking speed, indicating optimum efficiency for gait Walking is very energy-efficient, because of various mechanisms that ensure the mechanical energy the body has is passed on from one step to the next 1 Materiały informacyjne pochodzą ze strony www.biofizyka.awf.wroc.pl Sources of Energy 1. Metabolic energy E=E(L,f,v) E = b + m ⋅ v 2 = 32 + 0,0050 ⋅ v 2 Ralston (1958) Bobbert (1960) E= E0 E0 ≈ 2 2 s 2 f 1 − 2 1 − 2 1 − v f u vu su Zarrugh (1974) Zarrugh MY, Todd FN, Ralston HJ (1974) Optimization of energy expenditure during level walking. European Journal of Applied Physiology 33: 293–306. Ralston HJ (1958) Energy-speed relation and optimal speed during level walking. Internationale Zeitschrift für angewandte Physiologie 17: 277–283. Bobbert AC (1960) Energy expenditure in level and grade walking. Journal of Applied Physiology 15: 10151021. 2. Mechanical energy 4 forms of Mechanical Energy: Energy: Gravitational potential m g y Elastic potential ½ k s2 Translational kinetic ½ m v2 Rotational kinetic ½ I ω2 Total mechanical energy is sum of all four Elastic potential energy is usually omitted because it cannot be measured accurately • Cavagna et al., 1977; Ca vagna and Margaria,1966. • Inman (1981) Human Walking • Griffin (1999) Walking in simulated reduced gravity:mechanical energy fluctuations and exchange Winter DA, Quanbur y AO, Reimer GD (1976) Analysis of instantaneous energy of normal gait. Journal of Biomechanics 9: 253-257. dr inż S.Winiarski 2 Materiały informacyjne pochodzą ze strony www.biofizyka.awf.wroc.pl Gait Mechanism: echanism: an Overview Pendulum endulum--like movements of the limbs give rise to two phases: swing & stance stance;; The forward momentum of the body gives it the necessary initial angular velocity of rotation; rotation; “Inverted Inverted”” pendulum action also involves interinter- conversion of potential and kinetic energy, but in this case (unlike a conventional pendulum) pendulum) KE reaches a minimum at the midpoint of the motion, and PE is highest at that point point;; When reaching the endpoint of its “inverted swing” swing” the stance leg does not swing back, as a real inverted pendulum would, because the foot is taken off the floor, the fulcrum transfers from the foot to the hip, and the leg leg swings again as a conventional pendulum. The legs move as conventional pendulums during the swing (with a little assistance from the hip flexors); flexors); stance swing This reduces the amount of muscle energy needed to move the swinging leg forward; forward; Although the legs swing forwards much like pendulums, they are prevented from swinging backwards by footstrike footstrike;; Total Mechanical Energy Estimation - Methods Body Segment Energy Method (Multiple Rigid Body Method) Method) Sum of all segmental total mechanical energies (Es) 1 1 Etotal = ∑Es = ∑ms ⋅ g ⋅ ys + ms ⋅vs2 + Is ⋅ωs2 2 2 Body Center of Gravity Method (Single Rigid Body Method) Method) 2 1 Etotal = M ⋅ g ⋅ ycog + M ⋅ vcog 2 Inverse Dynamics and Joint Power Analysis Method Integral of Power with respect of Time Elftman (1939), Winter (1987) Winter DA, Quanbury AO, Reimer GD (1976) Analysis of instantaneous energy of normal gait. Journal of Biomechanics 9: 253-257 Cav agna GA, Thys H, Zamboni A (1976) The sources of external work in level walking and running. Journal of Physiology 262: 639-657 Winter DA (1979) A new definition of mechanical work done in human movement . Journal of Applied Physiology 46: 79-83. dr inż S.Winiarski 3 Materiały informacyjne pochodzą ze strony www.biofizyka.awf.wroc.pl Relation to to Other Mechanical Variables External Work = change in body total mechanical energy: Wext ext..=∆ Etotal=Etotal(tfinal)-Etotal(tinitial) Internal Work = mechanical cost of moving the limbs during a cyclic motion; motion; energy transfer from segment to segment; Wint.=Σ |∆Etotal|- Wext ext.. Pierrynow ski MR, Winter DA, Norman RW (1980) Transfers of mechanical energy within the total body and mechanical efficiency during treadmill walking. Ergonomics 23: 147-156. Robertson DGE, Winter DA (1980) Mechanical energy generation, absorption and transfer amongst segments during walking. Journal of Biomechanics 139: 845-854. Williams KR (1985) The relationship between mechanical and physiological energy estimates. Med Sci Sports Exercise 17: 317-325. Elftman H (1939) Forces and energy changes in the leg during walking. American Journal of Physiology 125: 339-356. Winter DA (1987) Mechanical power in human movement: generation, absorption and transfer. Med Sci Sports Exercise 25: 34-45. Aissaoui R, Allard P, Junqua A, Frossard L, Duhaime M (1996) Internal work estimation in three-dimensional gait analysis. Medical and Biological Engineering and Computing 34(6): 467-471. Energy Transfer Between Segments Winter DA (1979) A new definition of mechanical work done in human movement . Journal of Applied Physiology 46: 79-83. dr inż S.Winiarski 4 Materiały informacyjne pochodzą ze strony www.biofizyka.awf.wroc.pl Aim of Work to explore the possibilities of employing the total mechanical energy into estimating the mechanical cost of transport in normal and pathological human gait Material total of 130 barebare-foot subjects 53 male (age 31,5± 31,5±9,7); Test Group patients after ACL-reconstruction following physiotherapy process 23 male (age 22,1± 22,1±3,2); Control Group with no visible locomotor impairment Test patients underwent original physiotherapy process [Czamara, 2002] after the isolated ACL reconstruction, which involved harvesting the tendon graft (ST or GR) and rigid fixation. Three Stages of physiotherapy process: 1. 2–4 weeks postoperatively; 2. 5–8 weeks postoperatively; 3. 9–12 weeks postoperatively; dr inż S.Winiarski 5 Materiały informacyjne pochodzą ze strony www.biofizyka.awf.wroc.pl Instrumentation SIMI Motion Analysis System (Simi Reality Motion Systems GmbH, Unterschleissheim, Germany) I® SIM ISO quality standards: ISO 9001:2001 Anthropometric Model Clauser’ Clauser’s Model 14 rigid segments Clauser, McConv ille, Young (1969) Weight, volume and centre of mass of segments of the human body, AMRL-TR-69-70, Wright-Patterson Air Force Base. Chandler, Clauser, McConville, Young (1975) Investigation of inertial properties of the human body, AMRL-TR-74-137 Wright-Patterson Air Force Base. dr inż S.Winiarski 6 Materiały informacyjne pochodzą ze strony www.biofizyka.awf.wroc.pl Data Analysis 1. 2. 3. 4. 5. Registering the positions of CoG for each segment; Calculating the position of BCoG for every frame; Calculating the height and speed of BCoG; BCoG; Calculating the potential and horizontal kinetic energy of BCoG; BCoG; mg ⋅ hBCoG h norm norm E norm = hBCoG hBCoG = BCoG pot. = Normalization m⋅ g ⋅L L 2 norm k inet. E norm total E 2 0,5 ⋅ m ⋅ v BCoG v BCoG = = m⋅ g ⋅L 2 gL = E pot. + E k inet. m⋅ g ⋅ L 2 =h norm BCoG v + BCoG 2 gL Hof (1996) ; Sutherland (1996) ; Stansfield i wsp. (2001) ; Stansfield i wsp. (2006) Data Evaluation dr inż S.Winiarski 7 Materiały informacyjne pochodzą ze strony www.biofizyka.awf.wroc.pl Results Potential energy, mean± mean±SD, SD, men Normal (reference) group ACL-reconstructed group S tage 1 0,568 0,562 0,558 0,556 0,554 0,550 0,550 0,544 0,546 0,538 0,542 0,532 % Gait Cycle 0,538 % Gait Cycle Results Potential Energy in physiotherapy process 0,568 0,562 0,556 ACL 1 0,550 ACL 2 ACL 3 0,544 CG 0,538 0,532 dr inż S.Winiarski % Gait Cycle 8 Materiały informacyjne pochodzą ze strony www.biofizyka.awf.wroc.pl Results Kinetic Energy, Energy, mean± mean±SD, men Normal (reference) group 0,0385 ACL-reconstructed group S tage 1 0,0030 0,0380 0,0028 0,0375 0,0026 0,0370 0,0024 0,0022 0,0365 0,0020 0,0360 0,0355 0,0018 % Gait Cycle 0,0016 Results Kinetic Energy in physiotherapy process ACL 1 ACL 2 ACL 3 CG % Gait Cycle dr inż S.Winiarski 9 Materiały informacyjne pochodzą ze strony www.biofizyka.awf.wroc.pl Conclusions dr inż S.Winiarski Normal energy curves similar to Winter (1979), (1979), Griffin (1999) and Gider et al. (1995); (1995); Kinetic Energy is ca. 9 times lower then Potential Energy for the the Control Group; Potential Energy, Kinetic Energy and Total Mechanical Energy rises rises during physiotherapy process; Potential Energy is rising during physiotherapy process due to rising rising amplitude of BCoG trajectory; Potential Energy on stage 3 of physiotherapy is significantly lower lower then in control group; Mechanical Cost is lower for ACLACL-reconstructed group then for control group; On the stage 3 of physiotherapy Mechanical Cost is still lower then then in control group due to the significant lower amplitude of BCoG trajectory; 10