Arch. Min. Sci., Vol. 53 (2008), No 1, p. 97–114
Transkrypt
Arch. Min. Sci., Vol. 53 (2008), No 1, p. 97–114
Arch. Min. Sci., Vol. 53 (2008), No 1, p. 97–114 97 STANISŁAW PRUSEK*, ELIGIUSZ JĘDRZEJEC* ADJUSTMENT OF THE BUDRYK-KNOTHE THEORY TO FORECASTING DEFORMATIONS OF GATEROADS ADAPTACJA TEORII BUDRYKA-KNOTHEGO DO PROGNOZOWANIA DEFORMACJI CHODNIKÓW PRZYŚCIANOWYCH This paper presents a attempt to use the Budryk-Knothe theory for forecasting deformations of gateroads subjected to direct influence of the front abutment pressure. The work was carried out on the basis of underground measurements of vertical and horizontal convergence as well as floor heave in gate roads. Based on a detailed analysis of these measurements’ results and statistical calculations there were derived equations that allow determining magnitudes of deformations occurring in gateroads depending on their location in relation to the extraction front that influences them. Keywords: excavation, mining, gateroad, convergence, forecast W artykule przedstawiono próbę wykorzystania teorii Budryka-Knothego do prognozowania deformacji chodników narażonych na bezpośrednie wpływy ciśnień eksploatacyjnych. Podstawą prac były rezultaty pomiarów dołowych zaciskania pionowego, poziomego, jak również wypiętrzania skał spągowych w chodnikach przyścianowych. W wyniku wstępnych analiz stwierdzono znaczne podobieństwo pomiędzy deformacjami zmierzonymi w chodnikach w warunkach dołowych, a przebiegami ruchów górotworu, które można otrzymać z teorii Budryka-Knothego. Z tego powodu podjęto próbę wykorzystania tej teorii do predykcji deformacji chodników przyścianowych z uwagi na oddziaływanie czynnego frontu ścianowego, czyniąc przy tym następujące założenia: osiadanie skał stropowych w chodnikach opisuje się przy pewnym parametrze rozproszenia wpływów charakterystycznym dla rejonu stropu chodnika, wypiętrzenie skał spągowych opisane jest takim samym wzorem jak osiadanie stropu, lecz z innym współczynnikiem eksploatacyjnym i innym parametrem rozproszenia wpływów, charakterystycznym dla obszaru spągu chodnika, zaciskanie poziome wyznaczane jest jako iloczyn szerokości chodnika i poziomego odkształcenia panującego w górotworze w rejonie pomiaru, które można opisać przy pomocy teorii BudrykaKnothego, stosując odpowiednie parametry charakterystyczne dla tego obszaru chodnika. Po przyjęciu powyższych założeń opracowano funkcje aproksymujące wyniki pomiarów, wyznaczając nieznane ich parametry w oparciu o rezultaty badań dołowych. Wytypowano grupę parametrów charakteryzujących poszczególne badane wyrobiska przyścianowe, to jest długość frontu ściany, głębokość * CENTRAL MINING INSTITUTE, PL. GWARKÓW, 40-160 KATOWICE, POLAND 98 eksploatacji, wytrzymałość na ściskanie skał stropowych, spągowych, i węgla oraz typ i wymiary obudowy chodnikowej. Następnie przeprowadzono analizę regresji poszukując zależności parametrów aproksymacji z parametrami charakteryzującymi badane wyrobiska, w postaci zależności liniowych. Uzyskane równania regresji liniowej wbudowano w model predykcji zaciskania pionowego i poziomego oraz wypiętrzania spągu . Słowa kluczowe: eksploatacja, górnictwo, chodnik, konwergencja, prognoza 1. Introduction Gateroads play a critical role in the process of extracting hard coal seams by means of the longwall system. The state of the workings is instrumental in rhythmical extraction run, takes impact on the district’s ventilation, crew working conditions, transportation of materials and gotten haulage. Therefore investigations and research work are continually carried on in order to ensure appropriate size and geometry of the gate roads. The scientific work is aimed, among others, at detailed getting to know the phenomena occurring in the mine roads being under direct influence of the front abutment pressure. The most often investigative practise is performance of measurements of changes in height and breadth of the roads. Underground measurement results were for many researches a basis on which they built up their analyses from which were retrieved for example methods that allow to forecast squeeze of gateroads (e.g. Biliński, 1968; Marczak, 1996). Appropriate forecast information on the magnitude of deformations of the gateroads that may occur during a longwall advance is a very important element at the stage of planning extraction that influences proper choice of supports for these workings and organisation of activities indispensable for ensuring their functionality and safety. This paper presents a trial to use the Budryk-Knothe theory for forecasting gate road deformations. The theory has been commonly used in assessing the influence of active extraction work on the magnitude of surface and rock-mass deformations of for many years. The work on the use of the theory in forecasting gate road deformations was carried out in the framework of the statutory activity of the Central Mining Institute (GIG) (Prusek, 2005, 2006) and was based on results of underground deformation measurements performed at ten and several gateroads in diverse geological and mining conditions. Based on a detailed analysis of these measurements’ results and statistical calculations there were derived equations that allow determining magnitudes of vertical and horizontal convergence as well as floor heave that may occur in gate roads. 2. Underground investigations on gate road deformation and its characteristics In the work on adapting the Budryk-Knothe theory for the purposes of forecasting gate road deformations results of measurements performed in twelve gateroads were used. 99 The results were gained by cyclical carrying out the following measurements: vertical convergence, horizontal convergence, and floor heave. The measurements were performed according to a proprietary investigation methodology worked out by the Central Mining Institute (Biliński, 1968, 1996), which consisted in setting up measurement stations in the gateroads before an extraction front. At each such measurement station all the aforementioned measurements were cyclically carried out along with the measurement of distance between the extraction front and the measurement station. The roads at which the measurements were performed were located in diverse geological conditions and represented various mining-technical solutions including different support sizes (Prusek, 2005, 2006). Basic technical specifications that characterise the gateroads are presented in Table 2.1. TABLE 2.1 Basic technical specifications that characterise the gateroads in which the investigations were performed TABLICA 2.1 Dane charakteryzujące chodniki przyścianowe, w których prowadzono badania dołowe ich deformacji No. 1 2 3 4 5 6 7 8 9 10 11 12 Designation of colliery and gate road under investigation K1 – 4 K2 – 424 K2 – 426 K3 – 2502 K4 – 321 K5 – 762 K6 – 2E K2 – 316 K2 – 422 K7 – 221 K7 – 3 K1 – 5 L, m H, m g, m Rcst, Rcsp, Rcw, MPa MPa MPa sch, m hch, Size of support m set 345 250 250 180 250 210 205 250 250 220 200 230 32.2 21.6 26.1 10.0 36.6 11.4 20.4 16.0 21.6 28.0 31.0 32.2 5.5 4.7 4.7 5 4.7 5 5 5 4.7 5.5 5 5.5 3.8 3.3 3.3 3.5 3.3 3.5 3.5 3.5 3.3 3.8 3.5 3.8 990 500 500 490 695 390 550 340 500 270 710 970 2.4 2.0 2.0 3.0 1.5 3.0 3.0 2.6 2.0 3.3 2.0 2.2 39.5 20.0 31.4 32.2 15.7 23.5 16.0 16.0 20.0 14.0 24.0 39.5 14.7 14.8 17.4 32.2 14.9 22.6 16.0 15.0 14.8 14.0 15.7 14.7 ŁP10/V25/A ŁP8/V25/A ŁP8/V25/A ŁP9/V25/A ŁP8/V25/A ŁP9/V25/A ŁP9/V29/A ŁP9/V25/A ŁP8/V25/A ŁP10/V29/A ŁP9/V25/A ŁP10/V29/A Legend: K1-K7 – symbols of collieries and numbers of gateroads in which the underground investigations were performed, L – longwall length, H – extraction depth, g – seam thickness, Rcst – compressive strength of roof rocks, Rcsp – compressive strength of floor rocks, Rcw – compressive strength of coal, sch – road breadth, hch – road height. Oznaczenia w tablicy: K1-K7 – kopalnie, w których prowadzono badania dołowe wraz z numerami chodników przyścianowych, L – długość ściany, H – głębokość eksploatacji, g – grubość wybranego pokładu, Rcst – wytrzymałość skał stropowych na ściskanie, Rcsp – wytrzymałość skał spągowych na ściskanie, Rcw – wytrzymałość węgla na ściskanie, sch – szerokość chodnika, hch – wysokość chodnika. 100 The magnitudes vertical and horizontal convergences observed in the gateroads were diverse which surely resulted from different extraction parameters, specificity of geological conditions, extraction parameters and support sort applied in the roads under investigation. The vertical convergence in the roads ranged from 326 mm to 1651 mm, whereas horizontal convergence was included in a range between 100 mm and 742 mm. As to the vertical convergence a dominant share in its magnitude in majority of cases had floor heave with only a relatively small share of roof settling (Prusek, 2005, 2006). 3. Proposal of approximation model Figure 3.1 shows a system of co-ordinates XYZ whose plane XY is bound up with the coal seam in which a rectangular wall with a length of L has been assumed. An extraction front of longwalls advances in parallel to one of the rectangle sides beginning Y A2 A3 A(x,y,z) -L/2 A A4 A1 A diagram showing location of points at road cross section X -L/2 Xp X Fig. 3.1. Schematic presentation of spatial situation of longwall extraction in the system of coordinates XY. Initial location and instantaneous location of the extraction front are designated with (Xp) and (X) respectively. Over the longwall there are shown the road and arbitrary point A(x,y,z), at which w the rock-mass deformation parameters are to be determined. Aside one may see a diagram showing location of measurement points at road cross-section A1, A2, A3, A4 used to determine road convergence and floor heave (A1) as well as point A serving for forecasting horizontal convergence of a gate road Rys. 3.1. Schematyczne położenie eksploatacji ścianowej w układzie współrzędnych XY. Zaznaczono początkowe (Xp) oraz chwilowe (X) położenie frontu eksploatacyjnego. Nad ścianą pokazano chodnik oraz dowolny punkt A(x,y,z), w którym określa się wskaźniki deformacji górotworu. Obok schemat położenia punktów pomiarowych A1, A2, A3, A4 umieszczonych w przekroju poprzecznym chodnika i służących do pomiaru zaciskania chodnika i wypiętrzenia spągu (A1) a także punktu A służącego do prognozy poziomego zaciskania chodnika 101 from its initial location Xp. The mined seam thickness amounts to g and the extraction coefficient is equal to a. Axis Z of the co-ordinate system is directed to the ground surface, and plane Z = 0 divides the seam into halves. The Budryk-Knothe theory (Knothe, 1953; Litwiniszyn, 1953) determines settling of an arbitrary chosen rock-mass point w(x,y,z) with co-ordinates x, y, z located in a zone z > g/2 above an extracted seam, without dealing with the zone below the seam’s roof. In practical applications when influences of several extracted seams superimpose it is, in forecasting rock-mass deformation, oft assumed that the influences below the seam’s roof are null. It is justified because of the inconsiderable vertical range of the influence zone under the seam’s roof in comparison with the influence range above the seam (up to the surface). Moreover the theory defines lowering of a rock mass point depending on roof settling magnitude which constitutes the boundary condition for solving some partial differential equation of parabolic type. At the place of location of this boundary condition, i.e. at the seam roof, the value of parameter r (radius of influence spread) (compare below) is, out of definition, equal to zero. In the considered case of gate road deformations the measurement points were located at the roof level and below. Therefore from the formal point of view the Budryk-Knothe theory may not be applied here directly. Yet the form of functions existing in the description of displacements in the Budryk-Knothe theory is very similar to the floor heaves and horizontal convergences gained from the underground measurements. It suggests the idea of using the functions that describe sag and horizontal deformation in the BudrykKnothe theory as functions that approximate the shape of roof settling, floor heave and horizontal convergence of a gate road. In the gateroads there were performed measurements of floor heave wsp at point A1, vertical convergence Z of the considered road between points A1 and A2 and horizontal convergence M of the considered road between points A3 and A4. The formulas describing floor heave and roof settling may be applied to forecast vertical convergence. Because horizontal convergence is measured using points located at the same level z, it is possible to use the following approximation to describe it M = - sch e yy ( A) where sch — distance between points A3 and A4 (road width) εyy(A) — horizontal deformation perpendicularly to the longitudinal road axis determined at point A. The following approximation formulas were proposed to describe floor heave wsp, roof sag wst, vertical convergence Z and horizontal convergence M in gateroads depending on longwall extraction front location X: wsp = C1 F1 (x1 ( x, r1 , p1 ), x2 ( x, r1 , p1 )) (3.1) 102 wst = C2 F1 (x1 ( x, r2 , p2 ), x 2 ( x, r2 , p2 )) (3.2) Z = C1 F1 (x1 ( x, r1 , p1 ), x 2 ( x, r1 , p1 )) + C 2 F1 (x1 ( x, r2 , p2 ), x2 ( x, r2 , p2 )) (3.3) M = C F1 (x1 ( x, r , p), x 2 ( x, r , p)) (3.4) where: C1, C2, C — coefficients independent from location x of point A in the road and location X of the longwall front but dependent on location y of point A as per the formulas C1 = a1 gF1 (h1 ,h 2 ) (3.5) C 2 = a2 gF1 (h1 ,h 2 ) (3.6) C=Q g sch F2 (h1 ,h 2 ) r (3.7) r1, r2, r — parameters that determine the horizontal spread of extraction impact at the level of the road floor (point A1), road roof (point A2) and point A, respectively p1, p2, p — parameters that determine the extraction boundary on the front side (while p is positive – seeming retreat of the extraction front position by a value of p), Q — coefficient of road’s horizontal convergence at A-point level, a1, a2, a — parameters (analogous to the extraction coefficients) for road floor heave (point A1), road roof sag (point A2) and horizontal convergence at A-point level, respectively g — extracted thickness of seam, sch — road breadth, Xp — initial location of longwall front, pch — boundary on the road side (further assumed pch = –sch), where ξ1, ξ2, η1, η2, F1, F2 — are in formulae as below: x1 ( x, r, p ) = p Xp - p - x r 1 L+ y h1 ( y, r, pch ) = - p 2 r x2 ( x, r, p ) = p X - p-x r 1 L - pch - y h 2 ( y, r, pch ) = p 2 r p — so-called extraction boundary on the front side, pch — extraction boundary on the road side, (3.8) (3.9) 103 F1 (u ,v) = 1 [erf(v) - erf(u )] 2 F2 (u , v) = v exp(-v 2 ) - u exp(-u 2 ) erf (u ) = 2 u e p ò -t2 dt (3.10) (3.11) (3.12) 0 with the natural extension of the definition of function erf over negative numbers in form erf(-u ) = - erf(u) (3.12a) This description has been based on the formulae determining the coefficients of rock mass deformations caused by a longwall extraction front (Jędrzejec, 1999). 3.1. Methodology of adjusting parameters on the basis of measurements The method of smallest squares was applied to each of the aforementioned coefficients that consisted in such a selection of the parameters’ set that sum S of squares of deviations of measurement results from approximation values would be minimum (Smin) which gives for each of the three levels a system of nonlinear equations of parameters C, r and p. A measure of quality of the coefficient adjustment is s= S min N -3 (3.13) where N is a number of measurements used for determining the parameters. Because vertical convergence of a mine road is a sum of floor heave and roof sag (3.3) and parameters C1, r1 and p1 of approximation (3.1) the floor heave is determined from a separate their adjustment to observations of wsp, thus parameters C2, r2 and p2 for the approximation of roof sag may be determined in two ways: • From adjustment to observations wst = Z – wsp, • From adjustment to observations Z while assuming parameters C1, r1, p1 as known. Determining of the parameters was carried out by means of a computer programme specially developed for this purpose. 104 3.2. Results of calculations and analysis of them The calculation results are presented in Table 3.1. As parameters that describe the road roof sag (C2, r2 and p2) gained from the adjustment to observations wst = Z – wsp and from the adjustment to observations of Z (with already adjusted parameters C1, r1, p1) are not essentially different so arithmetic mean values of them was assumed as representative and placed in Table 3.2. A list of parameters C1, C2, C, r1, r2, r, p1, p2 determined in this way is presented in Table 3.2. Some exemplary curves of adjustment are shown in Figure 3.2. Fig. 3.2. Curves of adjustment for floor heave (left) and for vertical convergence Rys. 3.2. Wykresy dopasowania dla wypiętrzeń spągu (z lewej) i zaciskania pionowego TABLE 3.1 List of results of adjustment of the model’s parameters to individual measurement series TABLICA 3.1. Zestawienie wyników dopasowania parametrów modelu do poszczególnych serii pomiarowych No. Measurement series 1 2 3 4 5 6 7 K1 – 4 floor heave roof sag vertical convergence horizontal convergence 316 1200 1200 364 102 35 34 63 4 –8 –8 –2 7 28 29 11 1 Sort of deformation C, mm r, m p, m σ, mm 105 1 2 2 K2 – 424 3 K2 – C-426 4 K3 – 2502 5 K4 – 321 6 K5 – 762 7 K6 – 2E 8 K2 – 316 9 K2 – 422 10 K7 – 221 11 K7 – 3 12 K1 – 5 3 4 5 6 7 floor heave roof sag vertical convergence horizontal convergence floor heave roof sag vertical convergence horizontal convergence floor heave roof sag vertical convergence horizontal convergence floor heave roof sag vertical convergence horizontal convergence floor heave roof sag vertical convergence horizontal convergence floor heave roof sag vertical convergence horizontal convergence floor heave roof sag vertical convergence horizontal convergence floor heave roof sag vertical convergence horizontal convergence floor heave roof sag vertical convergence horizontal convergence floor heave roof sag vertical convergence horizontal convergence floor heave roof sag vertical convergence horizontal convergence 1084 529 530 397 928 591 622 928 306 292 293 117 448 300 352 475 90 229 229 95 212 91 90 196 351 124 123 284 1109 322 354 437 185 468 461 208 760 376 381 663 372 666 666 382 145 26 19 106 97 26 15 97 44 78 78 54 26 51 133 97 62 38 37 43 117 109 105 97 91 10 10 135 91 67 80 79 55 14 14 63 48 37 34 32 263 41 41 69 36 6 5 2 10 0 1 10 6 –5 –3 11 8 19 48 24 27 28 27 13 34 38 37 38 42 12 8 47 13 17 34 16 40 4 –3 42 9 –10 –11 0 80 15 15 9 27 42 42 19 47 27 68 47 28 14 37 9 34 5 12 35 4 7 9 4 4 3 5 9 19 18 21 14 23 8 36 11 7 29 44 6 31 14 33 10 7 11 27 14 106 TABLE 3.2 List of the approximation model parameters C1, C2, C, r1, r2, r, p1, p2, p TABLICA 3.2 Zestawienie parametrów C1, C2, C, r1, r2, r, p1, p2, p modelu aproksymacyjnego No. 1 2 3 4 5 6 7 8 9 10 11 12 Measurement series K1 – 4 K2 – 424 K2 – 426 K3 – 2502 K4 – 321 K5 – 762 K6 – 2E K2 – 316 K2 – 422 K7 – 221 K7 – 3 K1 – 5 C1 mm 316 1084 928 306 448 90 212 351 1109 185 760 372 C2 mm 1200 529 606 292 326 229 91 123 338 465 378 666 C mm 364 397 928 117 475 95 196 284 437 208 663 382 r1 m 102 145 97 44 26 62 117 91 91 55 48 263 r2 m 34 23 20 78 92 38 107 10 74 14 36 41 r m 63 106 97 54 97 43 97 135 79 63 32 69 p1 m 4 36 10 6 8 27 34 42 13 40 9 80 p2 m –8 5 1 –4 33 28 38 10 25 1 –10 15 p m –2 2 10 11 24 13 38 47 16 42 0 9 Assuming the extraction boundary on the road side pch = –sch, where sch is a road breadth, there were determined parameters a1, a2 that serve as extraction coefficients for floor heave and roof sag a1 = C1 gF1 (h1 , h 2 ) (3.14) a2 = C2 gF1 (h1, h 2 ) (3.15) where formulas (3.4) and (3.5) were applied with co-ordinates of measurement points L s y = + ch . 2 2 As for horizontal convergence – from some considerations follows that M=Q g sch F1 (x1 , x 2 ) F2 (h1 ,h 2 ) = CF1 (x 1 , x2 ) r (3.16) where Q is a dimensionless coefficient which is awaited to be approximately constant in given geological conditions. Knowing r and C, that have already been determined, it is possible to derive the following formula of Q from equation (3.16): Q= rC g sch F2 (h1 , h 2 ) (3.17) 107 Further, applying some analogies to the Budryk-Knothe theory the values of the following proportions were also investigated t1 = H r1 t2 = H r2 t= H r (3.18) k1 = p1 H k2 = p2 H k= p H (3.19) Values of calculated coefficients a1, a2, Q, t1, t2, t, k1, k2, k are presented in Table 3.3. TABLE 3.3 Values of a1, a2, Q, t1, t2, t, k1, k2, k calculated based on the adjusted parameters C1, C2, C, r1, r2, r, p1, p2, p TABLICA 3.3 Wartości obliczonych wielkości a1, a2, Q, t1, t2, t, k1, k2, k na podstawie dopasowanych parametrów C1, C2, C, r1, r2, r, p1, p2, p Road designation 1 K1 – 4 2 K2 – 424 3 K2 – 426 4 K3 – 2502 5 K4 – 321 6 K5 – 762 7 K6 – 2E 8 K2 – 316 9 K2 – 422 10 K7 – 221 11 K7 – 3 12 K1 – 5 No. a1 0.25 1.05 0.89 0.18 0.51 0.06 0.14 0.26 1.05 0.10 0.69 0.34 a2 Q t1 0.86 22.93 9.73 0.44 113.77 3.44 0.49 222.05 5.17 0.18 5.24 11.11 0.41 153.05 26.79 0.13 2.67 6.28 0.06 27.99 4.70 0.06 88.54 3.72 0.32 70.50 5.47 0.20 9.41 4.87 0.33 15.58 14.80 0.53 30.79 3.69 t2 t 28.89 15.60 22.19 4.72 24.52 5.17 6.27 9.01 7.58 7.15 10.38 9.05 5.12 5.65 33.95 2.52 6.78 6.30 19.23 4.28 19.80 22.22 23.81 14.10 k1 k2 k 0.0039 –0.0080 –0.0016 0.0712 0.0106 0.0034 0.0199 0.0011 0.0199 0.0132 –0.0077 0.0233 0.0117 0.0478 0.0344 0.0687 0.0710 0.0327 0.0616 0.0683 0.0684 0.1240 0.0294 0.1374 0.0260 0.0504 0.0312 0.1467 0.0024 0.1573 0.0120 –0.0144 –0.0002 0.0825 0.0153 0.0090 Extracted seam thickness, road height and breadth are so slightly diverse that these do statistically not depart from the constants (diversity coefficients are inconsiderable). Therefore investigations to find out dependence of the determined parameters on these data were abandoned. Coefficients of correlation between the determined parameters and L, H, Rcst, Rcsp, Rcw, ŁP (support set type) were calculated and results have been placed in Table 3.4. The large values of the following correlation coefficients are conspicuous: • Coefficients of correlation between parameters a1 and Q and road support set type • Coefficients of correlation between parameters a2 and t and depth H. 108 TABLE 3.4 Coefficients of correlation between each of parameters a1, a2, Q, t1, t2, t, k1, k2, k and data L, H, Rcst, Rcsp, Rcw, ŁP TABLICA 3.4 Współczynniki korelacji pomiędzy każdym z parametrów a1, a2, Q, t1, t2, t, k1, k2, k a danymi L, H, Rcst, Rcsp, Rcw, ŁP L H Rcst Rcsp Rcw ŁP a1 a2 Q t1 t2 0.1862 0.7655 0.2811 0.0175 0.5305 0.0482 0.7739 –0.0819 0.2964 0.1812 0.2253 0.6574 0.2568 0.4482 0.2509 –0.0361 0.6815 –0.1093 –0.1041 0.2964 –0.3152 –0.3129 –0.2757 0.0768 –0.4283 –0.7257 0.1353 –0.7166 –0.2412 0.3293 t 0.0468 0.7075 0.4029 0.5553 0.0153 0.3881 k1 –0.1922 –0.5173 –0.1982 –0.4353 –0.2785 0.3830 k2 –0.1606 –0.2641 –0.2862 –0.4906 –0.0847 –0.2941 k –0.1732 –0.6640 –0.1948 –0.6331 –0.1829 0.2589 3 . 3 . P r e d i c t i o n o f t h e a p p r o x i m a t i o n m o d e l ’s p a r a m e t e r s From an analysis of the data in Table 3.4 follows that it is possible to find the following relations: 1. a1(ŁP) 2. a2(L,H,Rcst,Rcsp) 3. Q(ŁP) 4. t1(Rcst) 5. t2(L,Rcw) 6. t(H,Rcst,Rcsp) 7. k1(H,Rcsp) 8. k2(Rcsp) 9. k(H,Rcsp) An analysis of multidimensional linier regression, in which dependence coefficients are determined by means of the minimum square method, was applied to determine the selected dependencies in linier form. The following results have been received: ì0.87 ï a1 = í0.26 ï0.23 î for £P 8 for £P9 for £P10 a 2 = –0.80 + 0.00245 L + 0.000077 H + 0.01153 Rcstr + 0.01343 Rcsp ì139.8 ï Q = í 28.2 ï 21.0 î for £P 8 for £P9 for £P10 (3.20) (3.21) (3.22) 109 t1 = –0.188 + 0.3554 Rcstr (3.23) t 2 = 0.832 + 0.0992 L – 0.4018 Rcw (3.24) t = –1.790 + 0.01655 H – 0.01829 Rcstr + 0.06263 Rcsp (3.25) k 1 = 0.121 – 0.000087 H – 0.00073 Rc sp (3.26) k 2 = 0.062 – 0.00162 Rcsp (3.27) k = 0.146 – 0.0001 H – 0.00188 Rcsp (3.28) Values of parameters a1, a2, Q, t1, t2, t, k1, k2, k calculated with the help of linear regression formulas (3.20)…( 3.28) for the real data from Table 2.1 are presented in Table 3.5. TABLE 3.5 Prediction of parameters a1, a2, Q, t1, t2, t, k1, k2 and k by means of formulae (3.20)…(3.28) for the real data from Table 1 TABLICA 3.5 Predykcja parametrów a1, a2, Q, t1, t2, t, k1, k2, k przy pomocy wzorów (3.20)…(3.28) dla danych rzeczywistych z tablicy 1 Road designation 1 K1 – 4 2 K2 – 424 3 K2 – 426 4 K3 – 2502 5 K4 – 321 6 K5 – 762 7 K6 – 2E 8 K2 – 316 9 K2 – 422 10 K7 – 221 11 K7 – 3 12 K1 – 5 No. a1 a2 Q t1 t2 t 0.23 0.87 0.87 0.26 0.87 0.26 0.26 0.26 0.87 0.23 0.26 0.23 1.02 0.37 0.57 0.23 0.50 0.19 0.19 0.24 0.37 0.27 0.42 0.74 21.00 139.80 139.80 28.20 139.80 28.20 28.20 28.20 139.80 21.00 28.20 21.00 11.26 7.49 9.09 3.37 12.82 3.86 7.06 5.50 7.49 9.76 10.83 11.26 36.51 27.10 27.36 21.88 27.11 23.91 22.76 27.12 27.10 24.04 22.23 25.11 16.48 7.34 7.97 8.15 10.03 5.93 7.94 4.55 7.34 3.04 10.90 16.15 k1 k2 k 0.0060 –0.0020 –0.0273 0.0629 0.0296 0.0584 0.0546 0.0111 0.0370 0.0549 0.0098 0.0365 0.0491 0.0366 0.0470 0.0699 0.0239 0.0628 0.0615 0.0361 0.0609 0.0797 0.0361 0.0819 0.0629 0.0296 0.0584 0.0873 0.0393 0.0927 0.0417 0.0231 0.0299 0.0078 –0.0020 –0.0253 It worthwhile noticing that the parameters calculated by means of the formulae show good agreement with those gained intermediately from measurements, in spite of the not numerous data series – only 12 cases. Coefficients a1 and a2 have similar values as the extraction coefficients in the BudrykKnothe model. Values of parameters t that conceptually correspond to parameters tgβ 110 are of similar value order – yet, one should keep in mind here that the description refers to the direct seam vicinity. The order of values of parameters k is also the same like that used in practical applications of the Budryk-Knothe model. 4. An example of forecasting gateroad deformations by means of the approximation model Lineal regression formulae (3.20)…(3.28) allow to calculate parameters a1, a2, Q, t1, t2, t, k1, k2 and k when data characterising extraction L, H, Rcst, Rcsp, Rcw, and road support set type ŁP are known. One should keep in mind that these make sense only in the data range from which these were derived and any trial to go beyond the extrapolation range may (but does not have to) lead to a loss of their physical sense. Next, one should calculate parameters r1, r2, r, p1, p2, p using formulas (3.18) and (3.19) and parameters C1, C2, C using formulas (3.14), (3.15)...(3.17). Finally the forecasted floor heave, roof sag , vertical convergence and horizontal convergence for an arbitrarily selected longwall front location X may be calculated from formulas (3.1)…(3.4). In order to make the calculations easier A new computer programme Konwergencja has been developed (Figure 4.1) being a form of specialised calculator that calculates the model parameters for assumed data: L, H, Rcst, Rcsp, Rcw and ŁP. The computer programme also plots curves of forecasted indices (Figure 4.2) 5. Summary The Budryk-Knothe theory is used in many cases for determining ground surface deformations caused by mining operations. This publication presents results of work performed to check possibilities of adapting the theory for the purposes of forecasting rock mass movements around the gateroads that are subjected to a number of mine roadways located in diverse geologic conditions were analysed. The measurements of deformations such as vertical convergence, horizontal convergence, floor heave and roof sag depending on the longwall front location were measured. Based on performed calculations some approximation formulae have been proposed to forecast of gate road deformations. Comparison of approximation curves drawn up based on calculations with results of the underground measurements showed a good agreement. It is indispensable to verify the gained dependences based on results of new underground measurements in gate roads. Moreover it would be necessary to try and adjust approximation dependences other than the linear ones which might lead to improved accuracy of such forecasts. 111 a) Legend: Zaciskania chodnika – Road convergences; Plik – File; Pokaż raport – Show report; Wykresy – Curves; Pomoc – Help; Ściana – Longwall; wybieg – advancement; Chodnik – Road; odrzwia – support set; szerokość – breadth; skał stropowych – of roof rocks; skał spągowych – of floor rocks; pokładu – of seam; Oblicz - Calculate b) Legend: Zaciskania chodnika – Road convergences; Plik – File; Pokaż raport – Show report; Wykresy – Curves; Pomoc – Help; Dane – Data; Wyniki – Results; Maksymalne zaciskania – Maximum convergences; pionowe – vertical; poziome – horizontal. Fig. 4.1. Graphical Interface of the programme Konwergencja a) – Data input, b) – Results Rys. 4.1. Graficzny interfejs programu. a) – wprowadzanie danych, b) – wyniki 112 a) Maximum vertical convergence = 1410 mm Legend: Wykresy – Curves; Rysuj wykres zaciskań pionowych – Draw a vertical convergence curve b) Maximum floor heave = 946 mm Legend: Wykresy – Curves; Rysuj wykres wypiętrzeń spągu – Draw a floor heave curve 113 c) Maximum horizontal convergence = 1287 mm Legend: Wykresy – Curves; Rysuj wykres zaciskań poziomych – Draw a horizontal convergence curve Fig. 4.2. Exemplary course of convergence curves: a) vertical convergence, b) floor heave, c) horizontal convergence Rys. 4.2. Przykładowy przebieg krzywych zaciskania: a) zaciskanie pionowe, b) wypiętrzanie spągu, c) zaciskanie poziome REFERENCE B i l i ń s k i A., 1968. Przejawy ciśnienia górotworu w polach eksploatacji ścianowej w pokładach węgla. Zeszyty Naukowe Politechniki Śląskiej nr 221. B i l i ń s k i A., 1996. Geomechaniczny monitoring zmechanizowanych ścian zlokalizowanych na dużych głębokościach. Prace Naukowe GIG nr 812. C h u d e k M., P a c h A., L u k i a n B., S k u d l i k G., G a r n c a r z R., 1987. Prognoza zaciskania chodników przyścianowych. Zeszyty Naukowe Politechniki Śląskiej, seria: Górnictwo z. 157. Gliwice. J a c o b i O., 1976. Praxis der Gebirgsbeherrschung, Verlag Glückauf, Essen. J ę d r z e j e c E., 1999. Prognozowanie deformacji pochodzących od frontu ścianowego dla wybranych funkcji czasu. Prace Naukowe GIG, Konferencje Nr 30. Katowice. K a m m e r W., 1977. Die Ausbauplanung durch Vorausberechnung der Endkonvergenz in Abbaustrecken, Glückauf 113 (1977) Nr. 15. K n o t h e S., 1953. Równanie profilu ostatecznie wykształconej niecki osiadania. Archiwum Górnictwa i Hutnictwa, t. 1, z. 1. K u l a s s e k M., 2044. Erweiterung der Konvergenzberechnung für Bogenstrecken, Glückauf 140 (2004) Nr. 5. 114 L i t w i n i s z y n J., 1953. Równanie różniczkowe przemieszczeń górotworu. Archiwum Górnictwa i Hutnictwa, t. 1, z. 1. M a r c z a k H., 1966. Modelowanie i prognozowanie zachowania się wyrobiska korytarzowego. Wiadomości Górnicze 1/1996. P r u s e k S. i in., 2005. Metoda prognozowania zaciskania chodników przyścianowych. Praca GIG (nie publikowana) o symbolu 11040305-150. P r u s e k S. i in., 2006. Optymalizacja metod prognozowania zaciskania chodników przyścianowych. Praca GIG (nie publikowana) o symbolu 10000256-150. S c h w a r t z B.M., 1957. Die Bewegungen des Nebengesteins im Streb, Bergb.-Wiss. 4 (1957), H. 8. Received: 06 August 2007