a,b
Transkrypt
a,b
Uniform distribution
• Assume that X is random variable with uniform
distribution over interval (a,b)
• Calculate:
–
–
–
–
–
f(x),
F(x),
E[X],
E[X2],
V[X]
f(x)
x
a
b
Uniform distribution
f(x)
1
f ( x)
ba
1
ba
a
b
x
F(x)
1
1
F ( x)
( x a)
ba
a
b
x
Uniform distribution
b
b
b
2
b
1
1
x
E[ X ] x f ( x) x
xdx
dx
ba a
2(b a) a
ba
a
a
ab
b2 a2
2
2(b a)
b
b
b
3 b
1 x
1
1
2
x dx
E[ X ] x f ( x) x
dx
ba 3
ba a
ba
a
a
2
2
2
b3 a 3
a 2 ab b 2
3(b a)
3
a
Uniform distribution
b
b
1
dx
V [ X ] ( x E[ X ]) f ( x)dx x E[ X ]
ba
a
a
2
2
b
x
E[ X ]x
x 2 xE[ X ] E[ X ]
dx
3(b a) a
ba
ba
a
b
2
2
3
2 b
2
b
E[ X ] x
ba a
a
b3 a 3 E[ X ](b 2 a 2 ) E[ X ]2 (b a)
3(b a)
ba
ba
b 2 ab a 2 (a b)(a b) (a b) 2
3
2
4
(a b) 2 (a b) 2 (a b) 2 ab (a b) 2 4ab (b a) 2
3
2
4
3
12
12
12
Geometric distribution
• Number of failures before first
success
• Numer of trials to get one
success
• Calculate G(z)
• Calculate E[X]
• Prove the memoryless property
p(k ) p(1 p)
k
p(k ) p(1 p)
k 1
Geometric distribution
GX ( z ) ?
i 0
i 0
GX ( z ) E[ z X ] p(1 p)i z i p ((1 p) z )i
p
1 (1 p) z
a0
q
1 q
k k0
k
Geometric distribution
1 p
p(1 p)
p
E[ X ] G (1)
2
p
1 (1 p) z 1 (1 (1 p) z ) 1
'
'
• Quotient rule for derivatives
'
f ( x)
f ' ( x) g ( x) f ( x) g ' ( x)
2
g
(
x
)
g
(
x
)
• Product rule for derivatives
f ( x) g ( x)'
f ' ( x) g ( x) f ( x) g ' ( x)
Geometric distribution
i 0
i 0
i 1
E[ X ] ip (1 p)i p i (1 p)i p(1 p) i (1 p)i 1
d
d
i
p(1 p) (1 p) p(1 p) (1 p)i
dp i 1
i 1 dp
d 1 p
p (1 p) 1 p
p(1 p)
p(1 p)
2
p
p
dp p
Hint:
q
k k0
k
ak 0
1 q
Geometric distribution
p(k ) p(1 p)
k 1
P{X i j | X i} P{X j}
P{ X i j, X i} P{ X i j}
P{X i j | X i}
P{ X i}
P{ X i}
p(1 p)
k i j 1
k 1
k 1
p
(
1
p
)
k i 1
(1 p)
i j
(1 p)
(1 p)
k 1
i
(1 p)
k 1
(1 p) j P{X j}
k 1
k 1
(1 p)i j
i
(1 p)
Poisson distribution
• X is random variable with Poisson distribution
X~Poiss(a), calculate:
–
–
–
–
–
G(z)
E[X] from G(z)
E[X2] from G(z)
V[X] = E[X2] – E[X]2
E[X] from definition
a k a
p(k ) e
k!
Poisson distribution
k
a k a k
(
az
)
GX ( z ) e z e a
e a e az e a ( z 1)
k!
k 0 k!
k 0
E[ X ] G (1) e
'
a ( z 1) '
ae a ( z 1) a
E[ X ] G (1) G (1) e
2
''
'
1
1
a ( z 1) ''
a a 2e a ( z 1) a a 2 a
1
1
V [ X ] E[ X 2 ] E[ X ]2 a
d d
E[ X ] z
dz dz
k
( k 1)
(k )
d
G( z ) z G( z )
dz
z 1
z 1
Poisson distribution
k
a
a a a
a
e a
E[ X ] k e e k
k!
k!
k 1 ( k 1)!
k 0
k 0
k
k
k 1
k
a
a
e a a
e a a e a aea a
k 1 ( k 1)!
k 0 k!
Poisson distribution
• X and Y are independent random variables with
Poisson distributions X~Poiss(a), Y~Poiss(b), prove
that:
– Z=X+Y ~ Poiss(a+b)
– Hint: calculate G(z)
GZ ( z ) GX ( z)GY ( z) e( z 1) a e( z 1)b e( z 1)( a b)
Exponential distribution
• X is random variable with exponential distribution
X~Exp(), calculate:
–
–
–
–
–
–
–
F(x)= ∫f(t)dt
E[X] = ∫tλe-λtdt
E[X2] = ∫t2λe-λtdt
f*(s)= ∫e-st f(t)dt
E[X] = -f*’(0)
E[X2] = -f*”(0)
V[X] = 1/λ2
Exponential distribution
x
F ( x)
x
x
f (t )dt e dt e dt
t
0
t
0
0
1
x
e
t
e
0
d e
d
0
1 e x
d
d t
t
e
dt
e dt
d 0
d
0
E[ X ] tf (t )dt te t dt
t
t x
1 1
d 1
2
d
0
Exponential distribution
2
d
d
2
2
E[ X ] t f (t )dt t 2 e t dt
te t dt 2 e t dt
d
d
0
0
0
2
d
d
d 1
2 2
1
t
2 e dt 2
2 4 2
d
d 0
d
2
f ( s) e
*
st
f (t )dt e e dt e
0
st
t
0
( s ) t
dt
s
Exponential distribution
1
E[ X ] f (0)
2
( s ) 0
'
E[ X ] f (0)
2
( s )
2
'
''
V [ X ] E[ X ] E[ X ]
2
2
0
2
2
2( s)
2
( s) 4 0 2
1
2
1
2
Exponential distribution
• X1~Exp(), X2~Exp() independent, Z=min(X1,X2)
– Prove that Z~Exp( +)
– Hint – try to calculate P{Z> z}
– Interpretation – joint service intensity of two servers working in
parallel
Exponential distribution
P{Z z} 1 P{Z z} 1 P{min( X1 , X 2 ) z}
1 P{X1 z X 2 z} 1 P{X1 z}P{X 2 z} 1 ez e z
1 e( ) z
Exponential distribution
• X~Exp(), Y~Exp() independent, find P{X<Y}
• Use joint distribution: fX,Y = fX fY
• P{X<Y} = ∫ P{X<Y | X=t} fX(t)dt = ∫ P{Y>t} fX(t)dt =
= ∫ GY(t) fX(t)dt = /(+)
• interpretation: probability that next customer arrives before the
current customer service is finished
Exponential distribution
Y
X<Y
Y=X
y
f
XY
( x, y )dx
0
y
dy
f XY ( x, y )dxdy
0 0
0
X
y
Exponential distribution
y
P{ X Y }
0 0
y x y
f XY ( x, y )dxdy e e dx dy
00
y
1
e y e x dx dy e y e x dy
0
0
0
0
y
1
1
e y e y dy e y 1 e y dy e y e ( ) y dy
0
0
0
e
y
dy e
0
1
( ) y
0
dy
1
e
y
0
1 ( ) y
e
0