Show publication content!

Transkrypt

Show publication content!
P R A C E IN S T Y T U T U G E O D E Z JI I K A R T O G R A F II
T o m X X V , Z e s z y t 1/58, 1978
528.72:629.785
K A Z IM IE R Z C ZAR N E C K I
J E R Z Y B. R O G O W S K I
Wstępne opracowanie fotogramów uzyskanych z obserwacji
słabych SSZ kamerą AFU-75
1. W prow adzenie
Jednym z zadań system u ,,CORSAT-System ” (opracowanego przez a u torów [1]), jest obliczenie topocentrycznych w spółrzędnych rów nikow ych
słabych sztucznych satelitów Ziemi, n a podstaw ie fotogram ów w ykonanych kam erą AFU-75 (system pracy kam ery С i CC).
Ten typ obserw acji polega, na odm iennym niż w przypadku satelitów
jasnych, skokowym śledzeniu satelity wzdłuż jego toru. O pracow anie ta kich obserw acji przy pomocy system u „CO RSA T-System ” w ym aga w łączenia do program u IDENTAUT-'L podprogram u READARK, stanow iącego w ym ienny blok w czytyw ania i kontroli w yników pom iarów w spółrzędnych płaskich х , у oraz opracow ania m om entów ekspozycji. P ro gram IDENTAUT-L, zaw ierający podprogram READARK, nazyw am y
dalej program em IDENTAUT-D.
2. Opis algory tm u
O rganizację podprogram u READARK ilu stru je schem at blokowy
(rys. 1). Podprogram ten w form ie w ym iennego bloku w program ie IDENTAUT-L/D został napisany w języku ALGOL-1204, a jego podstaw ow e zadania są następujące:
1) obliczenie średnich w spółrzędnych płaskich х , у (ze w szystkich serii
pom iarowych), kontrola popraw ności w ykonania pom iarów, sygnalizacja
błędów.
2) obliczenie m om entów ekspozycji, w raz z kontrolą, czy liczba popraw nych w artości pom iarów poszczególnych obiektów jest w ystarczająca
do dalszego opracow ania, a także kw alifikacja fotogram u do dalszego opracow ania lub do popraw y pom iarów,
3) transform acja obrazów gw iazd i śladów satelity do środkowego
położenia stołu kam ery w czasie obserw acji; kontrola popraw ności przesuw u stołu, oraz ponow na kw alifikacja przydatności fotogram u do dalszego opracow ania,
\7 P r a c e I n s t. G e o d e z ji i K a r t o g r a f i i
K a z im ie r z C za rn ec k i, J e r z y B. R o g o w s k i
Podprogram
READARK
( program IDENTAUT-D )
(start)
Oblicz, poprawionych wsp.x.y
gwiazd opon i śladów
satelity
----------------------x
Klat.
schem. blokowy pr. IDENTAUT-L С23
RYS. 1
W s tę p n e o p ra c o w a n ie fo to g ra m ó w
99
4)
obliczenie popraw ionych w spółrzędnych x, у obrazów gwiazd oporow ych i śladów satelity.
Transform acja obrazów gwiazd odw zorow anych na fotogram ie przy
poszczególnych położeniach stołu kam ery do środkowego położenia jest
now ym rozw iązaniem , zastosow anym w podprogram ie READARK, pozw alającym kilkakrotnie skrócić czas potrzebny do astrom etrycznego
opracow ania fotogram u.
Opis algorytm u będziem y prow adzić w edług załączonego schem atu
podprogram u READARK.
2.1. D ane w e jśc io w e
Można w yodrębnić trzy grupy d a n y c h :
1) dane o fotogram ie i kam erze satelitarnej,
2) w yniki pom iarów w spółrzędnych płaskich n a fotogram ie,
3) dane katalogow e do identyfikacji gwiazd oporowych.
Kolejność danych w ejściow ych jest następująca:
1) data obliczeń — w artość w spólna dla fotogram ów redukow anych
w danym dniu,
2) num er fotogram u,
3) num er satelity,
4) data w edług odczytu fotochronografu,
5) popraw ka fotochronografu (u) względem TU I,
6) m om ent synchroniczny,
7) liczba odczytów fotochronografu pom iędzy dw om a sąsiednim i indeksam i stałym i na fotogram ie,
8) liczba śladów satelity na fotogram ie,
9) liczba gwiazd oporowych,
10) liczba identyfikacyjnych gwiazd oporowych,
11) odczyty fotochronografu,
12) n u m ery gwiazd identyfikacyjnych (według kolejności pom iarów
gwiazd na koordynatom etrze),
13) tablica danych katalogow ych dla gwiazd identyfikacyjnych (ak,
P-ot/o ok> \Xok,
14) w yniki pom iarów w spółrzędnych х, у znaczków tłokow ych, indeksów, śladów satelity i śladów gwiazd (na koordynatom etrze Ascorecord).
2.2. W stę p n e o p ra c o w a n ie w y n ik ó w p o m ia ró w w sp ó łrz ę d n y c h х , у
Oblicza się średnie w artości w spółrzędnych х, у i elim inuje obserw acje nie spełniające poniższego kryterium .
100
K a z im ie r z C za rn e c k i, J e r z y B. R o g o w sk i
(1)
i= l
w którym a,; — oznacza w artość w spółrzędnej z pom iaru w i-tej serii,
ap — oznacza w artość współrzędnej z pom iaru w serii p, p —
n um er kontrolow anej serii, S — liczba w szystkich serii,
k a k ryterium aktualne obliczone w edług w zoru
(2 )
gdzie k r — stanow i w artość błędu granicznego pojedynczego pom iaru
ustaloną na podstaw ie badań koordynatom etru jako 0,012 mm dla obrazów
satelity i gwiazd oraz 0,020 m m dla obrazów indeksów.
Jeżeli w arunek określony zależnością (1) nie jest spełniony dla k tó regokolwiek z pom iarów obrazów satelity, gwiazd lub indeksów, to obraz
taki nie jest brany pod uwagę przy dalszym opracow aniu fotogram u.
Jeżeli kontrola w yników pom iaru tych obiektów była negatyw na, to
sygnalizow ane są kolejno num ery:
— śladów satelity,
— obrazów gwiazd z podaniem num erów położenia stołu kam ery,
— śladów indeksów.
2.3. O b liczen ie m o m e n tó w ek sp o z y c ji śla d ó w sa te lity
Sledzenie satelity kam erą AFU-75 polega n a kom pensacji pozornego
ru c h u satelity w płaszczyźnie tłowej przesuw em stołu w raz z m ateriałem
negatyw ow ym .
W m om entach kiedy stół nie przesuw a się, odfotografow ują się gw iazd y oraz indeks (bez obrazu fotochronografu), który nazyw am y indeksem
stałym . G dy natom iast śledzony jest satelita, stół znajduje się w ru ch u
i odfotografow ują się indeksy w raz z odczytam i fotochronografu. Te indeksy nazyw am y indeksam i czasu. K am era jest ta k skonstruow ana, że
niezależnie od długości kom pensacji, która może wynosić 3, 6, 12, 18,
36 mm, co 3 mm przesuw u stołu następuje odfotografow anie indeksu w raz
z odczytem fotochronografu.
W przypadku kom pensacji 3 mm (tj. dla dwóch rejestracji czasu pom iędzy nieruchom ym i położeniam i stołu), zgodnie z zaleceniem instrukcji
kam ery AFU-75 [3], obliczenia m om entów czasu ekspozycji satelity w y k o n u je się za pomocą wzoru
W stęp n e opracowanie fotogramów
101
w którym :
Ti — średni m om ent ekspozycji i-tego śladu satelity w yrażony w TU I,
tj, г — j-t y odczyt fotochronografu podczas odfotografow ania i-tego
śladu satelity,
x i,i X2,i — pom ierzone w artości odciętych dla stałych indeksów odpow iadających początkowi i końcowi ekspozycji i-tego śladu satelity,
x cjń — pom ierzona w artość odciętej j-tego indeksu czasu w interw ale
śledzenia i-tego śladu satelity (indeks za pomocą, którego odczytano w artość tj,,),
u •— popraw ka fotochronografu względem TU I.
N atom iast w przypadkach kom pensacji 6, 12, 18 lub 36 m m zastosow ano m etodę pozw alającą częściowo w yelim inow ać w pływ pew nych błędów przesuw u stołu kam ery [3]. W rozw iązaniu tym zakłada się, że zależność w spółrzędnej x od czasu jest następująca:
tj, i
A0i j + Л-i, i x c.ń -\-A2,i ( x ^ ^ 2,
(4)
gdzie A0>i, A i,,, A2j ; — poszukiw ane p aram etry dla i-tego interw ału śledzenia satelity.
Aby znaleźć wyżej w ym ienione param etry należy rozw iązać m etodą
najm niejszych kw adratów S' układów rów nań popraw ek (5).
V j,, = A* i + A x, , X f H+ A M
(5)
w których: j = 1, 2, 3 . . . n; i = 1, 2, 3 . . . S;
przy czym л — liczba odczytów fotochronografu, pom iędzy dwom a sąsiednim i indeksam i stałym i na fotogram ie, S — liczba
śladów satelity n a fotogram ie.
N atom iast średnie m om enty czasu ekspozycji kolejnych śladów satelity
obliczym y w edług wzoru
Tj = A0>i + A Xj i Xi + A2, i X \ + u,
(6)
gdzie Xt =
W ybór m etody obliczeń w ykonyw any jest n a podstaw ie liczby odczytów fotochronografu n pom iędzy sąsiednim i indeksam i stałym i. Jeżeli
n > 2, to obliczenia prow adzim y za pom ocą w zorów (5), (6) w innym przypadku za pomocą w zoru (3). P rzed przystąpieniem do obliczeń każdego ze
średnich m om entów ekspozycji satelity spraw dza się czy w szystkie niezbędne do realizacji obliczeń w artości w spółrzędnych indeksów zostały popraw nie pom ierzone (patrz p u n k t 2.2). Jeżeli tak, to obliczany jest m om ent
ekspozycji Tj, jeżeli nie — obliczenie nie jest w ykonyw ane, zaś Tj p rzy jm uje w artość rów ną zero.
102
Kazimierz Czarnecki, Jerzy B. Rogowski
2.4. K ryterium liczby popraw nych m om en tów ekspozycji
Przed przystąpieniem do dalszego opracow ania zlicza się popraw nie
obliczone m om enty ekspozycji śladów satelity. W przypadku, gdy ich liczba jest m niejsza od czterech sygnalizuje się, że fotogram nie n ad aje się
do dalszego opracow ania, a obliczenia zostają przerw ane.
2.5. T ransform acja
obrazów
gw iazd
do środkow ego
położenia
stołu
W w yniku ob serw acji, słabych SSZ w ykonyw anych kam erą AFU-75,
na jednym fotogram ie m am y S + l obrazów gwiazd (S — liczba obrazów
satelity) odpowiadającym m omentom , w których nie następow ał przesuw
stołu w kamerze. Średnia z każdych dwóch kolejnych (sąsiednich) położeń
gwiazd odpowiada średniem u położeniu stołu, przy którym w ykonyw ana
jest ekspozycja satelity. Z tego powodu dla wyznaczenia w spółrzędnych
rów nikow ych satelity konieczne byłoby w ykonanie S transform acji opisanych w publikacji [4]. Postępow anie takie byłoby kłopotliwe i mało uzasadnione z punktu w idzenia ekonomiki procesu opracow ania. W zw iązku
z tym autorzy zdecydowali się na całkiem nową m etodę, która polega n a
transform acji obiektów odwzorowanych na fotogram ie do średniego położenia stołu kam ery. Zastosowano m etodę transform acji afinicznej, jako
najbardziej w tym przypadku uzasadnioną. W pierw szym etapie obliczane są w artości w spółrzędnych obrazów gwiazd Xj, j, Vi,j, odpow iadające
średnim poiożeniorn stołu w m omencie j-tej ekspozycji satelity. Obliczenie
to przeprow adzane jest za pomocą wzorów:
l
2
i +1)>
i
(7)
Vi,j = у (y i,i+ № ,j +i).
N astępnie oblicza się środkowe (średnie) położenie stołu ze w szystkich
S położeń. W spółrzędne X h Y t gwiazd, które określają środkowe położenie
stołu, obliczane są za pomocą wzorów:
y * > *
”s
y i = ~
у
_
УЫ,
3=1
gdzie £ — liczba śladów satelity na fotogramie.
<8 >
W stępne opracowanie fotogramów
103
Dla każdego j-tego położenia stołu układane są rów nania popraw ek
j-te j transform acji afinicznej m ające postać
Vjt i
i
(9)
gdzie Aj — m acierz poszukiw anych w spółczynników (al f j, b i j , a2,j, b2,j,
u, w) transform acji j,
p rzy czym:
au j b i,j u I
a2,j b2,j w \ ’
A
=
~Xi,j
Ум
1
- [ 5 1
K olejnym etapem opracow ania jest rozw iązanie m etodą najm niejszych
kw adratów S układów rów nań obserw acyjnych (9). W w yniku uzyskuje
się dla w szystkich j tranform acji j = 1, 2, 3,
S m acierze niew iadom ych
param etrów transform acji Aj , które będą w ykorzystane do kontroli popraw ności dopasowania, elim inacji gwiazd obarczonych dużym i błędam i
oraz transform acji śladów satelity do środkow ego położenia stołu. W dalszym opracow aniu num erycznym zostaną użyte w spółrzędne gwiazd oznaczone sym bolam i X h Yż.
2.6. K ontrola dopasow ania poszczególn ych gw iazd; elim in a cja gw iazd obarczonych
d u żym i błęd am i
Dla każdej г-tej gw iazdy oporowej w j-te j transform acji obliczone są
błędy pozorne VXj h V y }i oraz liczone są m oduły w ektorów całkow itego
przesunięcia V3-,
V** =lv 4 >t+ vlj.
(10)
M aksym alna w artość m ax Vjti dla każdej j-te j transform acji jest porów nyw ana z w ielkością dopuszczalną p rzy jętą jako 0,015 mm.
Jeżeli
m ax V jt i > 0 ,0 1 5 mm,
(11)
i.o i-ta gw iazda elim inow ana jest ze w szystkich transform acji, a obliczen ia są pow tarzane począwszy od p u n k tu 2.5, jednakże pod w arunkiem , że
liczba gwiazd, które pozostały w procesie opracow ania jest w iększa od
trzech. N iespełnienie ostatniego w a ru n k u jest sygnalizow ane, a proces
■upracowania num erycznego zostaje przerw any.
104
Kazim ierz Czarnecki, Jerzy B. Rogowski
2.7. T ransform acja ślad ów sa telity do środkow ego położenia stołu
Na podstaw ie param etrów transform acji w yznaczonych w punkcie 2.5,
obliczane są w spółrzędne śladów satelity w układzie odniesionym do środkowego położenia stołu. Obliczenia przeprow adzane są za pomocą w zorów :
Tj = AjTj
gdzie
(12)
przy czym:
X Y f — w spółrzędne х, у j-tego śladu satelity odniesione do środkowego położenia stołu,
x f ’ У8) — w spółrzędne х , у j-tego śladu satelity odniesione do układu
związanego z j-ty m położeniem stołu.
2.8. O bliczenie popraw ionych w sp ółrzęd n ych .r, у gw iazd oporow ych i ślad ów sa telity
W spółrzędne gwiazd i obrazów satelity na fotogram ie należy odnieść
do środka optycznego fotogram u za pomocą zależności:
Ах
Хр
x c,
Ау
Ур
y C)
(13)
w których:
x p, y p — pom ierzone w spółrzędne tłow e obrazu gwiazdy lub śladu satelity,
x c>Ус — w spółrzędne środka optycznego fotogramu.
K olejną czynnością program u jest popraw ienie tych w spółrzędnych ze
w zględu na w pływ dystorsji. W ykorzystano następujące w zory:
x = A x+ A x (Ax2+ A y 2) ci + Ax (Ax2+ A y 2)2 c2,
у = '\y + A y (Ax2+ A y 2) C i+A y (Ax2+ A y 2)2 c2,
..
gdzie:
cb c2 — są tak zw anym i współczynnikam i dystorsji radialnej,
x, у — to w spółrzędne tłow e popraw ione ze względu na w pływ zm ian
param etrów optycznych kam ery.
Realizacja program u IDENTAUT-D (z podprogram em READARK)
przez k om puter ODRA 1204 dla fotogram ów zaw ierających 15-^-20 gwiazd
oporow ych trw a około 4 m inut. W spółrzędne gwiazd oporowych uzyskane
w w yniku identyfikacji nie odbiegają od w artości katalogow ych w zasadzie więcej niż 5". W w yniku opracow ania uzyskuje się w yniki w form ie
identycznej, jak przy opracow aniu program em IDENTAUT-L [2].
W stępne opracowanie fotogramów
105
BIBLIOGRAFIA
[1] C z a r n e c k i K. A., R o g o w s k i J. B.: K o n c e p c ja s y s t e m u a u t o m a ty c z n e g o
o p ra co w an ia o b s e r w a c ji s z t u c z n y c h s a t e li tó w Z ie m i. P ra c e IG iK , T o m X X III,.
z. 2/53/, 1976.
[2] C z a r n e c k i K. A., R o g o w s k i J . B.: A u t o m a t y c z n a id e n t y f i k a c j a o b i e k ­
t ó w o d w z o r o w a n y c h n a fo t o g r a m a c h o b s e r w a c y j n y c h s z t u c z n y c h s a t e li tó w Z i e ­
mi. P ra c e IG iK . T om X X III, z eszy t 2/53/, 1976.
[3] In s tr u k c ja A s tr o n o m i c z e s k a j a f o t o u s t a n o w k a dlia n a b lj u d ie n i i i s k u s t w i e n n y c h
s p u t n i k ó w Z ie m li AFU-75.
[4] C z a r n e c k i K. A., R o g o w s k i J. B.: M eto d a tr a n s fo r m a c j i, ja k ą n a le ż y
stosow ać w procesie o p ra co w a n ia fo t o g r a m ó w sa te lita rn y c h . P ra c e IG iK , T o m
X X III, z. 2/53/, 1976.
R e c e n z o w a ł prof, dr hab. J u li a n R a d e c k i
R ę k o p i s zło żo no w R e d a k c j i w p a ź d z i e r n i k u 1977 r.
106
Kazimierz Czarnecki, Jerzy B. Rogowski
К А ЗИ М Е Ж ЧАРНЕЦКИ
Е Ж И Б. РО ГО ВСКИ
П РЕД В А РИ ТЕЛ ЬН А Я О БРА БО ТК А ФОТОГРАММ, П О ЛУЧЕН НЫ Х
И З НАБЛЮ ДЕНИЙ СЛ А БЫ Х ИСЗ КАМ ЕРОЙ AFU-75
Реяюме
О дной и з з а д а ч си стем ы „ C O R S A T -S y stem ” (р азр аб о тан н о й ав то р а м и [1])
я в л я е т с я в ы ч и сл е н и е т о п о ц е н т р и ч е с к и х э к в а т о р и а л ь н ы х к о о р д и н ат сл а б ы х и с к у с с т в е н н ы х сп у тн и к о в З ем л и , н а основе ф о то гр ам м в ы п о л н е н н ы х к а м ер о й
A F U -7 5 (систем а р аб о ты к а м е р ы С и СС).
Э тот ти п н абл ю д ен и й за к л ю ч а е т с я в ином, чем в сл у ч а е я с н ы х сп у тн и к о в,
с к а ч к о о б р азн о м н абл ю д ен и и с п у т н и к а в д о л ь его т р а е к т о р и и . О бр або тк а т а к и х
н аб л ю д ен и й с пом ощ ью си стем ы „C O R S A T -S y ste m ” тр ебу ет в к л ю ч е н и я в п р о гр ам м у ID E N T A U T -L п о дп р о гр ам м ы R E A D A R K , я в л я ю щ е й с я см ен н ы м бл о к о м
в ч и т ы в а н и я и к о н т р о л и р е зу л ь т а т о в и зм ер ен и й п л о с к и х к о о р д и н а т х , у и р а з р а б о т к и м ом ентов в зр ы в о в . П р о гр ам м а ID E N T A U T -L с о д е р ж а щ а я п одп р о гр ам м у
R E A D A R K н а зы в а е м д а л ь ш е п ро гр ам м о й ID E N T A U T -D .
П о дп рограм м а эта в ф о р м е сменного б л о к а в п рограм м е ID E N T A U T -L /D н а л и с а н а н а я з ы к е A LG O L-1204, а её осн овн ы е з а д а ч и следу ю щ и е:
1) В ы ч и сл ен и е ср ед н и х п л о с к и х к о о р д и н ат х , у (всех и зм е р и т е л ь н ы х серий),
к о н т р о л ь п р ав и л ь н о с т и п р о в ед ен и я и зм ер ен и й , с и гн а л и з а ц и я ош ибок.
2) В ы ч и сл ен и е м ом ентов эк с п о н и р о в а н и я , вм есте с к о н тр о л ем , я в л я е т с я ли
ч и с л о п р а в и л ь н ы х в е л и ч и н и зм ер ен и й о т д е л ь н ы х о б ъ е к т о в до стато ч н ы м д л я
д а л ь н е й ш е й р а зр аб о т к и , а т а к ж е к л а с с и ф и к а ц и я ф о т о гр а м м ы к д а л ь н е й ш е й р а з р а б о т к е и л и к п о п р а в к е и зм ер ен и й .
3) Т р а н с ф о р м а ц и я сн и м ко в св ё зд и следов с п у т н и к а к ср едн ем у п о л о ж е н и ю
•стола к а м е р ы во в р е м я н аб л ю д ен и я, к о н т р о л ь п р а в и л ь н о с т и сдв и га сто л а и сн о в а к л а с с и ф и к а ц и я п риго дн о сти ф о т о гр а м м ы к д а л ь н ей ш ей обработке.
4) В ы ч и сл ен и е п р а в и л ь н ы х к о о р д и н а т х, у сн им ков о п о р н ы х зв е зд и сл едо в
сп у тн и к о в.
Т р а н с ф о р м а ц и я сн и ш к о в зв е зд о т о б р а ж е н ы х н а ф о то гр ам м е п р и о т д е л ь н ы х п о л о ж е н и я х сто л а к а м е р ы о тн о си тел ьн о к средн ем у п о ло ж ен и ю , я в л я е т с я
н овы м реш ен и ем , п р и м ен ен н ы м в п одп рограм м е R E A D A R K , р а зр е ш а ю щ и м с о к р а т и т ь м н о го кр атн о в р е м я н еобходим ое л я а стр о м етр и ч еск о й о бработки ф о т о грам м ы .
Р е ш е н и е это д е л а е т в о зм о ж н ы м т а к ж е п р и м е н я т ь в п роцессе д а л ь н е й ш е й
а с т р о м ет р и ч еск о й о б р аб о тки одну п рограм м у ..S A T C O R ” , с л у ж а щ у ю д л я в ы ч и с л е н и я т о п о ц ен тр и ч ес к и х э к в а т о р и а л ь н ы х ко о р д и н ат, н езави си м о от п р о гр ам м ы
р аб о ты к ам ер ы .
W stępne opracowanie fotogramów
107
K A Z IM IE R Z C Z A R N E C K I,
J E R Z Y B. R O G O W S K I
PRELIMINARY ELABORATION OF PHOTOGRAPHS OBTAINED
FROM OBSERVATIONS OF DULL EARTH SA TELLITES BY MEANS
OF AFU-75 CAMERA
Summary
O ne o f th e m a in ta s k s of th e C O R S A T -S y stem [1] is c o m p u ta tio n of to p o c e n tric
e q u a to ria l c o o rd in a te s of d u ll E a r th s a te lite s o b se rv e d b y m e a n s o f A F u -7 5 c a m e ra
u sin g ,,C od C C ” o b s e rv a tio n a l sy ste m .
O b se rv a tio n of su ch sa te llite s, c o n tr a ry to th e b rig h t ones, a re e x e c u te d b y
step tra c k in g of d u ll s a te llite a lo n g its tra je c to ry . So, sp e c ja ł su p p ro g ra m calle d
R E A D A R K h a d to be c o n n ec te d to ID E N T A U T -L p ro g ra m to e n a b le u se of
„ C O R S A T -S y stem ” fo r d u ll s a te lite p h o to g ra p h s. R E A D A R K su b p ro g ra m h a s b e e n
fo reseen as an e x d a n g e a b le b lo ck o f IN D E N T A U T -L p ro g ra m . R e s u lts of d u ll
s a te llite s o b se rv a tio n s h a d to be a d a p te d to th e sy s te m of in p u t d a ta u se d by
ID E N T A U T -L p ro g ra m . M e a s u re m e n ts of x , jy -co o rd in ates sh o u ld be also c h e c k e d
and re s p e c tiv e m o m e n ts of o b s e rv a tio n sh o u ld b e a d d itio n a lly c o m p u ted .
ID E N T A U T -L p ro g ra m in c lu d in g R E A D A R K s u b p ro g ra m is c a lle d ID E N T A U T -D .
T h ese p ro g ra m s h a v e b e e n w r itte n in A LG O L -1204 la n g u a g e . T h e m a in ta s k s of
ID E N T A U T -D p ro g ra m a re as fo llo w s:
1. C o m p u ta tio n of m e a n v a lu e s of x , у -c o o rd in a te s of a ll o b se rv a tio n s , c h e c k in g o f
m e a s u re m e n ts on p h o to g ra p h a n d in d ic a tio n of o b s e rv a tio n a l e ro rrs .
2. C o m p u ta tio n of th e m o m e n ts of o b se rv a tio n s . C h e c k in g of su ffic ie n c y of th e
n u m b e r of c o rre c t m e a s u se m e n ts of p a r tic u la r o b je c ts a n d q u a lific a tio n o f th e
p h o to g ra p h fo r f u r th e r e la b o ra tio n o r fo r im p ro v e m e n t of m e a s u re m e n ts .
3. T ra n s fo rm a tio n o f c o o rd in a te s of re ffe re n c e s ta rs a n d s a te llite p rin ts to th e
c e n tra l p o sitio n of th e ta b le of c a m e ra . C h e c k in g of th e c o m p e n s a tio n a l m o v e m e n t
of th e ta b le of c a m e ra is also done. D ecisio n on f u r th e r e la b o ra tio n of th e p h o to g ra p h is m a d e a g a in a s a r e s u lta t of th is ch eck in g .
4. C o m p u a tio n of fin a l x , у -c o o rd in a te s of re ffe re n c e s ta rs a n d s a te litte p o in ts.
T ra n s fo rm a tio n of a ll o b jc e ts o b se rv e d in a ll p a r tic u la r p o sitio n o f th e c a m e ra
to th e c e n tr a l p o sitio n o f th e ta b le o f c a m e ra is th e n e w id e a of so lu tio n o f th e
p ro b lem . I t e n a b le s u n if ic a tio n of f u r th e r a stro n o m ic e la b o ra tio n b y m e a n s of one
p ro g ra m (SA T C O R ) ig n o sin g d iffe re n c e s in sy s te m s o f th e w o rh of s a te llite c a m e ra
being u sed w h e n o b se rv a tio n e of b rig h t o r d u ll s a te llite s a re p e rfo rm e d .
SPIS
TREŚCI
Z B IG N IE W B O C H E N E K
W A LD E M A R M A D E J
N u m e ry c z n e p rz e tw a rz a n ie o b raz ó w s a te lita rn y c h i jego z a sto so w a n ie
w o p ra c o w a n iu m a p y u ż y tk o w a n ia ziem i okolic w a rs tw y . . . .
3
K A Z IM IE R Z C Z A R N E C K I
JE R Z Y B. R O G O W S K I
O b licze n ie to p o c e n try c z n y c h ró w n ik o w y c h w sp ó łrz ę d n y c h S S Z w s y stem ie „C O R SA T — S y ste m ”
................................................................................. 19
G RA ŻYN A SK ALSKA
A n a liz a fo to g ra m e try c z n a m e to d o p ra c o w a n ia m a p y s y tu a c y jn e j u lic
w s k a li 1 : 250 .....................................................................................................................
43
W O JC IE C H JA N U S Z
M eto d y p re c y z y jn e g o p o m ia ru od leg ło ści pozio m y ch i p io n o w y ch .
.
61
JE R Z Y B U T O W T T
JA N U S Z G Ą S IO R
R O M U A LD K A C Z Y Ń S K I
S z y b k a o b ró b k a fo to c h e m ic z n a p ły t Z P -3 O R W O i je j w p ły w n a k a r to m e try c z n o ść o b r a z u ....................................................................................................... 87
K A Z IM IE R Z C Z A R N E C K I
JE R Z Y B. R O G O W S K I
W stę p n e o p ra c o w a n ie fo to g ra m ó w u z y sk a n y c h z o b se rw a c ji słab y c h
SS Z k a m e rą A F U - 7 5 ....................................................................................................... 97
СОДЕРЖАНИЕ
ЗБИ ГН ЕВ БО Х ЕН ЕК
В А Л Ь Д Е М А Р М А ДЕЙ
Ч и словое п р е о б р а зо в ан и е к о с м и ч е с к и х сн и м ко в и его п р и м ен ен и е
в р а зр а б о т к е к а р т ы и с п о л ь зо в а н и я зе м е л ь о к р е с т н о с т я х В а р ш а в ы
.
К А ЗИ М ЕЖ ЧА РНЕЦКИ
Э Ж И Б. Р О Г О В С К И
О п ред елен и е т о п о ц е н т р и ч е с к и х э к в а т о р и а л ь н ы х к о о р д и н а т SSZ в с и стеме „ C O R S A T -S y ste m ” ................................................................................................ 19
ГРА Ж И НА СКА ЛЬСКА
А н а л и з ф о т о гр а м м е т р и ч е с к и х м етодов р а зр а б о т к и к а р т ы си ту ац и и
у л и ц в м асш таб е 1 : 250 ................................................................................................
ВОЙЦЕХ ЯНУШ
М етод ы точного и зм е р е н и я г о р и зо н т а л ь н ы х и в е р т и к а л ь н ы х р а с сто ян и и
............................................................................................................................ 61
Е Ж И БУТОВТТ
ЯНУШ ГОНСИОР
РО М У А Л Ь Д К А Ч И Н Ь С К И
Б ы с т р а я ф о т о х и м и ч е с к а я о бр аб о тка п л а с ти н о к Z P -3 O RW O и её в л и ян и е на к ар т о м е т р и ч н о с т ь с н и м к а .......................................................................... 87
К О ЗИ М ЕЖ Ч А РН ЕЦ КИ
Е Ж И Б . РО ГО В С К И
П р е д в а р и т е л ь н а я о бр аб о тка ф о то гр ам м , п о л у ч е н н ы х и з н абл ю д ен и й
сл аб ы х SSZ к ам ер о й A F U - 7 5 .........................................................................................97
3
43
CONTENTS
Z B IG N IE W B O C H EN E K
W A LD EM AR M A D EJ
D ig ita l p ro ce ssin g of s a te llite d a ta a n d its a p p lic a tic n in e la b o ra tio n
3
of la n d u se m a p of W a rs a w a r e a .........................................................................
K A Z IM IE R Z C ZA R N E C K I
.;e r z y В. R O G O W SK I
C o m p u ta tio n of to p o c e n tric e q u a to ria l co o rd in a te s of e a rth s a te llite s
in „C O R S A T -S y stem ” .......................................................................................................19
GRAŻYNA SK A LSK A
A n aly sis of p h o to g ra m m e tric m e th o d s of e la b o ra tio n oE s tr e e t situ a tio n
m a p a t scale 1 :250
.......................................................................................................
43
W O JC IE C H JA N U S Z
T h e m e th o d s of p re c isio n m e a s u re m e n ts of h o riz o n ta l a n d v e rtic a l
d i s t a n c e s ............................................................................................................................. 61
JE R Z Y B U T O W TT
JA N U S Z G Ą SIO R
R O M U A LD K A C Z Y Ń S K I
Q u ick p h o to c h e m ic a l p ro cessin g of Z P -3 p la te s an d its in flu e n c e on
im ag e a c c u r a c y .............................................................................................................. ..........
K A Z IM IE R Z C Z A R N E C K I
JE R Z Y В. R O G O W S K I
P re lim in a ry e la b o ra tio n of p h o to g ra p h s o b ta in e d fro m o b se rv a tio n s of
w e a k e a rth s a te llite s b y m e a n s of A FU -75 c a m e r a .....................................97